These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
193 related articles for article (PubMed ID: 17452532)
1. Dissection of the pathway required for generation of vitamin A and for Drosophila phototransduction. Wang T; Jiao Y; Montell C J Cell Biol; 2007 Apr; 177(2):305-16. PubMed ID: 17452532 [TBL] [Abstract][Full Text] [Related]
2. Cellular sites of Drosophila NinaB and NinaD activity in vitamin A metabolism. Yang J; O'Tousa JE Mol Cell Neurosci; 2007 May; 35(1):49-56. PubMed ID: 17344064 [TBL] [Abstract][Full Text] [Related]
3. Drosophila ninaB and ninaD act outside of retina to produce rhodopsin chromophore. Gu G; Yang J; Mitchell KA; O'Tousa JE J Biol Chem; 2004 Apr; 279(18):18608-13. PubMed ID: 14982930 [TBL] [Abstract][Full Text] [Related]
4. NinaB is essential for Drosophila vision but induces retinal degeneration in opsin-deficient photoreceptors. Voolstra O; Oberhauser V; Sumser E; Meyer NE; Maguire ME; Huber A; von Lintig J J Biol Chem; 2010 Jan; 285(3):2130-9. PubMed ID: 19889630 [TBL] [Abstract][Full Text] [Related]
5. NinaB combines carotenoid oxygenase and retinoid isomerase activity in a single polypeptide. Oberhauser V; Voolstra O; Bangert A; von Lintig J; Vogt K Proc Natl Acad Sci U S A; 2008 Dec; 105(48):19000-5. PubMed ID: 19020100 [TBL] [Abstract][Full Text] [Related]
6. Filling the gap in vitamin A research. Molecular identification of an enzyme cleaving beta-carotene to retinal. von Lintig J; Vogt K J Biol Chem; 2000 Apr; 275(16):11915-20. PubMed ID: 10766819 [TBL] [Abstract][Full Text] [Related]
7. Rhodopsin formation in Drosophila is dependent on the PINTA retinoid-binding protein. Wang T; Montell C J Neurosci; 2005 May; 25(21):5187-94. PubMed ID: 15917458 [TBL] [Abstract][Full Text] [Related]
8. ISX is a retinoic acid-sensitive gatekeeper that controls intestinal beta,beta-carotene absorption and vitamin A production. Lobo GP; Hessel S; Eichinger A; Noy N; Moise AR; Wyss A; Palczewski K; von Lintig J FASEB J; 2010 Jun; 24(6):1656-66. PubMed ID: 20061533 [TBL] [Abstract][Full Text] [Related]
9. β-Carotene and its cleavage enzyme β-carotene-15,15'-oxygenase (CMOI) affect retinoid metabolism in developing tissues. Kim YK; Wassef L; Chung S; Jiang H; Wyss A; Blaner WS; Quadro L FASEB J; 2011 May; 25(5):1641-52. PubMed ID: 21285397 [TBL] [Abstract][Full Text] [Related]
10. Analysis of the blind Drosophila mutant ninaB identifies the gene encoding the key enzyme for vitamin A formation invivo. von Lintig J; Dreher A; Kiefer C; Wernet MF; Vogt K Proc Natl Acad Sci U S A; 2001 Jan; 98(3):1130-5. PubMed ID: 11158606 [TBL] [Abstract][Full Text] [Related]
11. Retinoid production using metabolically engineered Escherichia coli with a two-phase culture system. Jang HJ; Yoon SH; Ryu HK; Kim JH; Wang CL; Kim JY; Oh DK; Kim SW Microb Cell Fact; 2011 Jul; 10():59. PubMed ID: 21801353 [TBL] [Abstract][Full Text] [Related]
12. Identification and characterization of a mammalian enzyme catalyzing the asymmetric oxidative cleavage of provitamin A. Kiefer C; Hessel S; Lampert JM; Vogt K; Lederer MO; Breithaupt DE; von Lintig J J Biol Chem; 2001 Apr; 276(17):14110-6. PubMed ID: 11278918 [TBL] [Abstract][Full Text] [Related]
13. A class B scavenger receptor mediates the cellular uptake of carotenoids in Drosophila. Kiefer C; Sumser E; Wernet MF; Von Lintig J Proc Natl Acad Sci U S A; 2002 Aug; 99(16):10581-6. PubMed ID: 12136129 [TBL] [Abstract][Full Text] [Related]
14. Conversion of beta-carotene to retinal pigment. Biesalski HK; Chichili GR; Frank J; von Lintig J; Nohr D Vitam Horm; 2007; 75():117-30. PubMed ID: 17368314 [TBL] [Abstract][Full Text] [Related]
15. Provitamin A conversion to retinal via the beta,beta-carotene-15,15'-oxygenase (bcox) is essential for pattern formation and differentiation during zebrafish embryogenesis. Lampert JM; Holzschuh J; Hessel S; Driever W; Vogt K; von Lintig J Development; 2003 May; 130(10):2173-86. PubMed ID: 12668631 [TBL] [Abstract][Full Text] [Related]
16. In vitro and in vivo characterization of retinoid synthesis from beta-carotene. Fierce Y; de Morais Vieira M; Piantedosi R; Wyss A; Blaner WS; Paik J Arch Biochem Biophys; 2008 Apr; 472(2):126-38. PubMed ID: 18295589 [TBL] [Abstract][Full Text] [Related]
17. Towards a better understanding of carotenoid metabolism in animals. von Lintig J; Hessel S; Isken A; Kiefer C; Lampert JM; Voolstra O; Vogt K Biochim Biophys Acta; 2005 May; 1740(2):122-31. PubMed ID: 15949678 [TBL] [Abstract][Full Text] [Related]
18. Nutrigenetics of carotenoid metabolism in the chicken: a polymorphism at the β,β-carotene 15,15'-mono-oxygenase 1 (BCMO1) locus affects the response to dietary β-carotene. Jlali M; Graulet B; Chauveau-Duriot B; Godet E; Praud C; Nunes CS; Le Bihan-Duval E; Berri C; Duclos MJ Br J Nutr; 2014 Jun; 111(12):2079-88. PubMed ID: 24642187 [TBL] [Abstract][Full Text] [Related]
19. Optimized formation of detergent micelles of beta-carotene and retinal production using recombinant human beta,beta-carotene 15,15'-monooxygenase. Kim NH; Kim YS; Kim HJ; Oh DK Biotechnol Prog; 2008; 24(1):227-31. PubMed ID: 18154347 [TBL] [Abstract][Full Text] [Related]
20. Retinal production from beta-carotene by beta-carotene 15,15'-dioxygenase from an unculturable marine bacterium. Kim YS; Park CS; Oh DK Biotechnol Lett; 2010 Jul; 32(7):957-61. PubMed ID: 20229064 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]