BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

248 related articles for article (PubMed ID: 17452626)

  • 1. TGFbeta3 inhibits E-cadherin gene expression in palate medial-edge epithelial cells through a Smad2-Smad4-LEF1 transcription complex.
    Nawshad A; Medici D; Liu CC; Hay ED
    J Cell Sci; 2007 May; 120(Pt 9):1646-53. PubMed ID: 17452626
    [TBL] [Abstract][Full Text] [Related]  

  • 2. TGFbeta3 signaling activates transcription of the LEF1 gene to induce epithelial mesenchymal transformation during mouse palate development.
    Nawshad A; Hay ED
    J Cell Biol; 2003 Dec; 163(6):1291-301. PubMed ID: 14691138
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Induction of palate epithelial mesenchymal transition by transforming growth factor β3 signaling.
    Jalali A; Zhu X; Liu C; Nawshad A
    Dev Growth Differ; 2012 Aug; 54(6):633-48. PubMed ID: 22775504
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transforming growth factor beta (TGFbeta) signalling in palatal growth, apoptosis and epithelial mesenchymal transformation (EMT).
    Nawshad A; LaGamba D; Hay ED
    Arch Oral Biol; 2004 Sep; 49(9):675-89. PubMed ID: 15275855
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanisms of transforming growth factor β induced cell cycle arrest in palate development.
    Iordanskaia T; Nawshad A
    J Cell Physiol; 2011 May; 226(5):1415-24. PubMed ID: 20945347
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microtubule disassembly prevents palatal fusion and alters regulation of the E-cadherin/catenin complex.
    Kitase Y; Shuler CF
    Int J Dev Biol; 2013; 57(1):55-60. PubMed ID: 23585353
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tak1, Smad4 and Trim33 redundantly mediate TGF-β3 signaling during palate development.
    Lane J; Yumoto K; Azhar M; Ninomiya-Tsuji J; Inagaki M; Hu Y; Deng CX; Kim J; Mishina Y; Kaartinen V
    Dev Biol; 2015 Feb; 398(2):231-41. PubMed ID: 25523394
    [TBL] [Abstract][Full Text] [Related]  

  • 8. TGFβ3 regulates periderm removal through ΔNp63 in the developing palate.
    Hu L; Liu J; Li Z; Ozturk F; Gurumurthy C; Romano RA; Sinha S; Nawshad A
    J Cell Physiol; 2015 Jun; 230(6):1212-25. PubMed ID: 25358290
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Epithelial Wnt/β-catenin signaling regulates palatal shelf fusion through regulation of Tgfβ3 expression.
    He F; Xiong W; Wang Y; Li L; Liu C; Yamagami T; Taketo MM; Zhou C; Chen Y
    Dev Biol; 2011 Feb; 350(2):511-9. PubMed ID: 21185284
    [TBL] [Abstract][Full Text] [Related]  

  • 10. IRF6 is the mediator of TGFβ3 during regulation of the epithelial mesenchymal transition and palatal fusion.
    Ke CY; Xiao WL; Chen CM; Lo LJ; Wong FH
    Sci Rep; 2015 Aug; 5():12791. PubMed ID: 26240017
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanisms of palatal epithelial seam disintegration by transforming growth factor (TGF) beta3.
    Ahmed S; Liu CC; Nawshad A
    Dev Biol; 2007 Sep; 309(2):193-207. PubMed ID: 17698055
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genome-Wide mRNA-Seq Profiling Reveals that LEF1 and SMAD3 Regulate Epithelial-Mesenchymal Transition Through the Hippo Signaling Pathway During Palatal Fusion.
    Shu X; Shu S; Cheng H
    Genet Test Mol Biomarkers; 2019 Mar; 23(3):197-203. PubMed ID: 30767676
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regulation of epithelial-mesenchymal transition in palatal fusion.
    Yu W; Ruest LB; Svoboda KK
    Exp Biol Med (Maywood); 2009 May; 234(5):483-91. PubMed ID: 19234053
    [TBL] [Abstract][Full Text] [Related]  

  • 14. E-cadherin controls beta-catenin and NF-kappaB transcriptional activity in mesenchymal gene expression.
    Solanas G; Porta-de-la-Riva M; Agustí C; Casagolda D; Sánchez-Aguilera F; Larriba MJ; Pons F; Peiró S; Escrivà M; Muñoz A; Duñach M; de Herreros AG; Baulida J
    J Cell Sci; 2008 Jul; 121(Pt 13):2224-34. PubMed ID: 18565826
    [TBL] [Abstract][Full Text] [Related]  

  • 15. TCDD promoted EMT of hFPECs via AhR, which involved the activation of EGFR/ERK signaling.
    Gao Z; Bu Y; Liu X; Wang X; Zhang G; Wang E; Ding S; Liu Y; Shi R; Li Q; Fu J; Yu Z
    Toxicol Appl Pharmacol; 2016 May; 298():48-55. PubMed ID: 26971374
    [TBL] [Abstract][Full Text] [Related]  

  • 16. MiR-200b is involved in Tgf-β signaling to regulate mammalian palate development.
    Shin JO; Lee JM; Cho KW; Kwak S; Kwon HJ; Lee MJ; Cho SW; Kim KS; Jung HS
    Histochem Cell Biol; 2012 Jan; 137(1):67-78. PubMed ID: 22072420
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Disintegration of the medial epithelial seam: is cell death important in palatogenesis?
    Iseki S
    Dev Growth Differ; 2011 Feb; 53(2):259-68. PubMed ID: 21338351
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Temporal Expression of miRNAs in Laser Capture Microdissected Palate Medial Edge Epithelium from Tgfβ3(-/-) Mouse Fetuses.
    Warner D; Ding J; Mukhopadhyay P; Brock G; Smolenkova IA; Seelan RS; Webb CL; Wittliff JL; Greene RM; Pisano MM
    Microrna; 2015; 4(1):64-71. PubMed ID: 26159804
    [TBL] [Abstract][Full Text] [Related]  

  • 19. SMAD2 overexpression rescues the TGF-β3 null mutant mice cleft palate by increased apoptosis.
    AlMegbel AM; Shuler CF
    Differentiation; 2020; 111():60-69. PubMed ID: 31677482
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Glycoprotein A repetitions predominant (GARP) positively regulates transforming growth factor (TGF) β3 and is essential for mouse palatogenesis.
    Wu BX; Li A; Lei L; Kaneko S; Wallace C; Li X; Li Z
    J Biol Chem; 2017 Nov; 292(44):18091-18097. PubMed ID: 28912269
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.