These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
163 related articles for article (PubMed ID: 17452791)
1. High-pressure cryocooling for capillary sample cryoprotection and diffraction phasing at long wavelengths. Kim CU; Hao Q; Gruner SM Acta Crystallogr D Biol Crystallogr; 2007 May; 63(Pt 5):653-9. PubMed ID: 17452791 [TBL] [Abstract][Full Text] [Related]
2. Solution of protein crystallographic structures by high-pressure cryocooling and noble-gas phasing. Kim CU; Hao Q; Gruner SM Acta Crystallogr D Biol Crystallogr; 2006 Jul; 62(Pt 7):687-94. PubMed ID: 16790924 [TBL] [Abstract][Full Text] [Related]
3. High-pressure cooling of protein crystals without cryoprotectants. Kim CU; Kapfer R; Gruner SM Acta Crystallogr D Biol Crystallogr; 2005 Jul; 61(Pt 7):881-90. PubMed ID: 15983410 [TBL] [Abstract][Full Text] [Related]
4. Cryocooling and radiation damage in macromolecular crystallography. Garman EF; Owen RL Acta Crystallogr D Biol Crystallogr; 2006 Jan; 62(Pt 1):32-47. PubMed ID: 16369092 [TBL] [Abstract][Full Text] [Related]
5. Iodide-SAD, SIR and SIRAS phasing for structure solution of a nucleosome assembly protein. Yogavel M; Gill J; Sharma A Acta Crystallogr D Biol Crystallogr; 2009 Jun; 65(Pt 6):618-22. PubMed ID: 19465776 [TBL] [Abstract][Full Text] [Related]
6. Getting the best out of long-wavelength X-rays: de novo chlorine/sulfur SAD phasing of a structural protein from ATV. Goulet A; Vestergaard G; Felisberto-Rodrigues C; Campanacci V; Garrett RA; Cambillau C; Ortiz-Lombardía M Acta Crystallogr D Biol Crystallogr; 2010 Mar; 66(Pt 3):304-8. PubMed ID: 20179342 [TBL] [Abstract][Full Text] [Related]
7. Differential specific radiation damage in the Cu II-bound and Pd II-bound forms of an alpha-helical foldamer: a case study of crystallographic phasing by RIP and SAD. Fütterer K; Ravelli RB; White SA; Nicoll AJ; Allemann RK Acta Crystallogr D Biol Crystallogr; 2008 Mar; 64(Pt 3):264-72. PubMed ID: 18323621 [TBL] [Abstract][Full Text] [Related]
8. The interdependence of wavelength, redundancy and dose in sulfur SAD experiments. Cianci M; Helliwell JR; Suzuki A Acta Crystallogr D Biol Crystallogr; 2008 Dec; 64(Pt 12):1196-209. PubMed ID: 19018096 [TBL] [Abstract][Full Text] [Related]
9. Challenges of sulfur SAD phasing as a routine method in macromolecular crystallography. Doutch J; Hough MA; Hasnain SS; Strange RW J Synchrotron Radiat; 2012 Jan; 19(Pt 1):19-29. PubMed ID: 22186640 [TBL] [Abstract][Full Text] [Related]
10. How to avoid premature decay of your macromolecular crystal: a quick soak for long life. Kauffmann B; Weiss MS; Lamzin VS; Schmidt A Structure; 2006 Jul; 14(7):1099-105. PubMed ID: 16843891 [TBL] [Abstract][Full Text] [Related]
11. Facilitating protein crystal cryoprotection in thick-walled plastic capillaries by high-pressure cryocooling. Chen YF; Tate MW; Gruner SM J Appl Crystallogr; 2009 Jun; 42(Pt 3):525-530. PubMed ID: 19529790 [TBL] [Abstract][Full Text] [Related]
12. Reduction of X-ray-induced radiation damage of macromolecular crystals by data collection at 15 K: a systematic study. Meents A; Wagner A; Schneider R; Pradervand C; Pohl E; Schulze-Briese C Acta Crystallogr D Biol Crystallogr; 2007 Mar; 63(Pt 3):302-9. PubMed ID: 17327667 [TBL] [Abstract][Full Text] [Related]
13. A high-pressure cryocooling method for protein crystals and biological samples with reduced background X-ray scatter. Kim CU; Wierman JL; Gillilan R; Lima E; Gruner SM J Appl Crystallogr; 2013 Feb; 46(Pt 1):234-241. PubMed ID: 23396891 [TBL] [Abstract][Full Text] [Related]
14. Structure determination of a novel protein by sulfur SAD using chromium radiation in combination with a new crystal-mounting method. Kitago Y; Watanabe N; Tanaka I Acta Crystallogr D Biol Crystallogr; 2005 Aug; 61(Pt 8):1013-21. PubMed ID: 16041065 [TBL] [Abstract][Full Text] [Related]
15. De novo sulfur SAD phasing of the lysosomal 66.3 kDa protein from mouse. Lakomek K; Dickmanns A; Mueller U; Kollmann K; Deuschl F; Berndt A; Lübke T; Ficner R Acta Crystallogr D Biol Crystallogr; 2009 Mar; 65(Pt 3):220-8. PubMed ID: 19237744 [TBL] [Abstract][Full Text] [Related]
16. On the influence of the incident photon energy on the radiation damage in crystalline biological samples. Weiss MS; Panjikar S; Mueller-Dieckmann C; Tucker PA J Synchrotron Radiat; 2005 May; 12(Pt 3):304-9. PubMed ID: 15840915 [TBL] [Abstract][Full Text] [Related]
17. Away from the edge II: in-house Se-SAS phasing with chromium radiation. Xu H; Yang C; Chen L; Kataeva IA; Tempel W; Lee D; Habel JE; Nguyen D; Pflugrath JW; Ferrara JD; Arendall WB; Richardson JS; Richardson DC; Liu ZJ; Newton MG; Rose JP; Wang BC Acta Crystallogr D Biol Crystallogr; 2005 Jul; 61(Pt 7):960-6. PubMed ID: 15983419 [TBL] [Abstract][Full Text] [Related]
19. Comparison of phasing methods for sulfur-SAD using in-house chromium radiation: case studies for standard proteins and a 69 kDa protein. Watanabe N; Kitago Y; Tanaka I; Wang Jw; Gu Yx; Zheng Cd; Fan Hf Acta Crystallogr D Biol Crystallogr; 2005 Nov; 61(Pt 11):1533-40. PubMed ID: 16239732 [TBL] [Abstract][Full Text] [Related]
20. In-house sulfur SAD phasing: a case study of the effects of data quality and resolution cutoffs. Sarma GN; Karplus PA Acta Crystallogr D Biol Crystallogr; 2006 Jul; 62(Pt 7):707-16. PubMed ID: 16790926 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]