BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

310 related articles for article (PubMed ID: 17453156)

  • 41. Complexes between kinases, mitochondrial porin and adenylate translocator in rat brain resemble the permeability transition pore.
    Beutner G; Ruck A; Riede B; Welte W; Brdiczka D
    FEBS Lett; 1996 Nov; 396(2-3):189-95. PubMed ID: 8914985
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Detailing the role of Bax translocation, cytochrome c release, and perinuclear clustering of the mitochondria in the killing of HeLa cells by TNF.
    Pucci B; Bertani F; Karpinich NO; Indelicato M; Russo MA; Farber JL; Tafani M
    J Cell Physiol; 2008 Nov; 217(2):442-9. PubMed ID: 18546202
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The molecular composition of the mitochondrial permeability transition pore.
    Baines CP
    J Mol Cell Cardiol; 2009 Jun; 46(6):850-7. PubMed ID: 19233198
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Not all mitochondrial carrier proteins support permeability transition pore formation: no involvement of uncoupling protein 1.
    Crichton PG; Parker N; Vidal-Puig AJ; Brand MD
    Biosci Rep; 2009 Dec; 30(3):187-92. PubMed ID: 19622065
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Mechanism of 3-nitropropionic acid-induced membrane permeability transition of isolated mitochondria and its suppression by L-carnitine.
    Nishimura M; Okimura Y; Fujita H; Yano H; Lee J; Suzaki E; Inoue M; Utsumi K; Sasaki J
    Cell Biochem Funct; 2008 Dec; 26(8):881-91. PubMed ID: 18942062
    [TBL] [Abstract][Full Text] [Related]  

  • 46. In brain mitochondria the branched-chain fatty acid phytanic acid impairs energy transduction and sensitizes for permeability transition.
    Schönfeld P; Kahlert S; Reiser G
    Biochem J; 2004 Oct; 383(Pt 1):121-8. PubMed ID: 15198638
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Interactions of GSK-3β with mitochondrial permeability transition pore modulators during preconditioning: age-associated differences.
    Zhu J; Rebecchi MJ; Glass PS; Brink PR; Liu L
    J Gerontol A Biol Sci Med Sci; 2013 Apr; 68(4):395-403. PubMed ID: 23070879
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Increased expression and intramitochondrial translocation of cyclophilin-D associates with increased vulnerability of the permeability transition pore to stress-induced opening during compensated ventricular hypertrophy.
    Matas J; Young NT; Bourcier-Lucas C; Ascah A; Marcil M; Deschepper CF; Burelle Y
    J Mol Cell Cardiol; 2009 Mar; 46(3):420-30. PubMed ID: 19094991
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Tim50 maintains the permeability barrier of the mitochondrial inner membrane.
    Meinecke M; Wagner R; Kovermann P; Guiard B; Mick DU; Hutu DP; Voos W; Truscott KN; Chacinska A; Pfanner N; Rehling P
    Science; 2006 Jun; 312(5779):1523-6. PubMed ID: 16763150
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Targeting putative components of the mitochondrial permeability transition pore for novel therapeutics.
    Winquist RJ; Gribkoff VK
    Biochem Pharmacol; 2020 Jul; 177():113995. PubMed ID: 32339494
    [TBL] [Abstract][Full Text] [Related]  

  • 51. SHP-1 exhibits a pro-apoptotic function in antigen-stimulated mast cells: positive regulation of mitochondrial death pathways and negative regulation of survival signaling pathways.
    Inoue T; Suzuki Y; Mizuno K; Nakata K; Yoshimaru T; Ra C
    Mol Immunol; 2009 Dec; 47(2-3):222-32. PubMed ID: 19875169
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The triterpenoid 2-cyano-3,12-dioxooleana-1,9-dien-28-oic acid and its derivatives elicit human lymphoid cell apoptosis through a novel pathway involving the unregulated mitochondrial permeability transition pore.
    Brookes PS; Morse K; Ray D; Tompkins A; Young SM; Hilchey S; Salim S; Konopleva M; Andreeff M; Phipps R; Bernstein SH
    Cancer Res; 2007 Feb; 67(4):1793-802. PubMed ID: 17308122
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Regulation and pharmacology of the mitochondrial permeability transition pore.
    Zorov DB; Juhaszova M; Yaniv Y; Nuss HB; Wang S; Sollott SJ
    Cardiovasc Res; 2009 Jul; 83(2):213-25. PubMed ID: 19447775
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The adenine nucleotide translocase: a central component of the mitochondrial permeability transition pore and key player in cell death.
    Halestrap AP; Brenner C
    Curr Med Chem; 2003 Aug; 10(16):1507-25. PubMed ID: 12871123
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Cell death disguised: The mitochondrial permeability transition pore as the c-subunit of the F(1)F(O) ATP synthase.
    Jonas EA; Porter GA; Beutner G; Mnatsakanyan N; Alavian KN
    Pharmacol Res; 2015 Sep; 99():382-92. PubMed ID: 25956324
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Molecular basis of morphological changes in mitochondrial membrane accompanying induction of permeability transition, as revealed by immuno-electron microscopy.
    Terauchi S; Yamamoto T; Yamashita K; Kataoka M; Terada H; Shinohara Y
    Mitochondrion; 2005 Aug; 5(4):248-54. PubMed ID: 16050987
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Electrophysiological characterization of the Cyclophilin D-deleted mitochondrial permeability transition pore.
    De Marchi U; Basso E; Szabò I; Zoratti M
    Mol Membr Biol; 2006; 23(6):521-30. PubMed ID: 17127624
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Polyalanine tracts directly induce the release of cytochrome c, independently of the mitochondrial permeability transition pore, leading to apoptosis.
    Toriumi K; Oma Y; Mimoto A; Futai E; Sasagawa N; Turk B; Ishiura S
    Genes Cells; 2009 Jun; 14(6):751-7. PubMed ID: 19486166
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Rhein reverses doxorubicin resistance in SMMC-7721 liver cancer cells by inhibiting energy metabolism and inducing mitochondrial permeability transition pore opening.
    Wu L; Cao K; Ni Z; Wang S; Li W; Liu X; Chen Z
    Biofactors; 2019 Jan; 45(1):85-96. PubMed ID: 30496631
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Ca2+-dependent mast cell death induced by Ag (I) via cardiolipin oxidation and ATP depletion.
    Inoue T; Suzuki Y; Yoshimaru T; Ra C
    J Leukoc Biol; 2009 Jul; 86(1):167-79. PubMed ID: 19401388
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.