BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 17453193)

  • 1. Enhanced iturin A production by Bacillus subtilis and its effect on suppression of the plant pathogen Rhizoctonia solani.
    Mizumoto S; Hirai M; Shoda M
    Appl Microbiol Biotechnol; 2007 Jul; 75(6):1267-74. PubMed ID: 17453193
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Medium optimization of antifungal lipopeptide, iturin A, production by Bacillus subtilis in solid-state fermentation by response surface methodology.
    Mizumoto S; Shoda M
    Appl Microbiol Biotechnol; 2007 Aug; 76(1):101-8. PubMed ID: 17476498
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The influence of Bacillus subtilis RB14-C on the development of Rhizoctonia solani and indigenous microorganisms in the soil.
    Szczech M; Shoda M
    Can J Microbiol; 2005 May; 51(5):405-11. PubMed ID: 16088336
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Integrated biological and chemical control of damping-off caused by Rhizoctonia solani using Bacillus subtilis RB14-C and flutolanil.
    Kondoh M; Hirai M; Shoda M
    J Biosci Bioeng; 2001; 91(2):173-7. PubMed ID: 16232970
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Production of lipopeptide antibiotic iturin A using soybean curd residue cultivated with Bacillus subtilis in solid-state fermentation.
    Mizumoto S; Hirai M; Shoda M
    Appl Microbiol Biotechnol; 2006 Oct; 72(5):869-75. PubMed ID: 16575567
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Coproduction of surfactin and iturin A, lipopeptides with surfactant and antifungal properties, by Bacillus subtilis.
    Sandrin C; Peypoux F; Michel G
    Biotechnol Appl Biochem; 1990 Aug; 12(4):370-5. PubMed ID: 2119191
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of divalent ions on the solubility of iturin and bacillomycin L, antifungal peptidolipids of Bacillus subtilis.
    Besson F; Michel G
    Microbios; 1991; 65(262):15-21. PubMed ID: 1901618
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biocontrol of Rhizoctonia solani Damping-Off of Tomato with Bacillus subtilis RB14.
    Asaka O; Shoda M
    Appl Environ Microbiol; 1996 Nov; 62(11):4081-5. PubMed ID: 16535440
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of the culture medium on the production of iturin A by Bacillus subtilis.
    Besson F; Chevanet C; Michel G
    J Gen Microbiol; 1987 Mar; 133(3):767-72. PubMed ID: 3116164
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Second stage production of iturin A by induced germination of Bacillus subtilis RB14.
    Rahman MS; Ano T; Shoda M
    J Biotechnol; 2006 Oct; 125(4):513-5. PubMed ID: 16626834
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation of Yield and Surface Tension-lowering Activity of Iturin A Produced by Bacillus subtilis RB14.
    Habe H; Taira T; Sato Y; Imura T; Ano T
    J Oleo Sci; 2019 Nov; 68(11):1157-1162. PubMed ID: 31611518
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of carbon and nitrogen sources on growth and biological efficacy of Pseudomonas fluorescens and Bacillus subtilis against Rhizoctonia solani, the causal agent of bean damping-off.
    Peighamy-Ashnaei S; Sharifi-Tehrani A; Ahmadzadeh M; Behboudi K
    Commun Agric Appl Biol Sci; 2007; 72(4):951-6. PubMed ID: 18396833
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Antifungal characteristics of a fluorescent Pseudomonas strain involved in the biological control of Rhizoctonia solani.
    Pal KK; Tilak KV; Saxena AK; Dey R; Singh CS
    Microbiol Res; 2000 Sep; 155(3):233-42. PubMed ID: 11061193
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cloning, sequencing, and characterization of the genetic region relevant to biosynthesis of the lipopeptides iturin A and surfactin in Bacillus subtilis.
    Yao S; Gao X; Fuchsbauer N; Hillen W; Vater J; Wang J
    Curr Microbiol; 2003 Oct; 47(4):272-7. PubMed ID: 14629006
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bacillomycin L and surfactin contribute synergistically to the phenotypic features of Bacillus subtilis 916 and the biocontrol of rice sheath blight induced by Rhizoctonia solani.
    Luo C; Zhou H; Zou J; Wang X; Zhang R; Xiang Y; Chen Z
    Appl Microbiol Biotechnol; 2015 Feb; 99(4):1897-910. PubMed ID: 25398282
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Endophytic colonization of balloon flower by antifungal strain Bacillus sp. CY22.
    Cho SJ; Lim WJ; Hong SY; Park SR; Yun HD
    Biosci Biotechnol Biochem; 2003 Oct; 67(10):2132-8. PubMed ID: 14586100
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biofilm formation and lipopeptide antibiotic iturin A production in different peptone media.
    Zohora US; Rahman MS; Ano T
    J Environ Sci (China); 2009; 21 Suppl 1():S24-7. PubMed ID: 25084425
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inhibition of some mycotoxigenic fungi by iturin A, a peptidolipid produced by Bacillus subtilis.
    Klich MA; Lax AR; Bland JM
    Mycopathologia; 1991 Nov; 116(2):77-80. PubMed ID: 1780001
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The supernatant of Bacillus pumilus SQR-N43 has antifungal activity towards Rhizoctonia solani.
    Huang X; Yong X; Zhang R; Shen Q; Yang X
    J Basic Microbiol; 2013 Aug; 53(8):657-63. PubMed ID: 23417338
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Studies on the antifungal antibiotics: bacillomycin D and bacillomycin D methylester.
    Tenoux I; Besson F; Michel G
    Microbios; 1991; 67(272-273):187-93. PubMed ID: 1779878
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.