These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

57 related articles for article (PubMed ID: 1745355)

  • 1. Self-sustaining limbic status epilepticus. II. Role of hippocampal commissures in metabolic responses.
    VanLandingham KE; Lothman EW
    Neurology; 1991 Dec; 41(12):1950-7. PubMed ID: 1745355
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Self-sustaining limbic status epilepticus. I. Acute and chronic cerebral metabolic studies: limbic hypermetabolism and neocortical hypometabolism.
    VanLandingham KE; Lothman EW
    Neurology; 1991 Dec; 41(12):1942-9. PubMed ID: 1745354
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Self-sustaining limbic status epilepticus induced by 'continuous' hippocampal stimulation: electrographic and behavioral characteristics.
    Lothman EW; Bertram EH; Bekenstein JW; Perlin JB
    Epilepsy Res; 1989; 3(2):107-19. PubMed ID: 2707248
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Time course of c-FOS expression in status epilepticus induced by amygdaloid stimulation.
    Hsieh PF; Watanabe Y
    Neuroreport; 2000 Feb; 11(3):571-4. PubMed ID: 10718316
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recurrent spontaneous hippocampal seizures in the rat as a chronic sequela to limbic status epilepticus.
    Lothman EW; Bertram EH; Kapur J; Stringer JL
    Epilepsy Res; 1990 Jul; 6(2):110-8. PubMed ID: 2387285
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The functional anatomy of limbic status epilepticus in the rat. I. Patterns of 14C-2-deoxyglucose uptake and Fos immunocytochemistry.
    White LE; Price JL
    J Neurosci; 1993 Nov; 13(11):4787-809. PubMed ID: 8229199
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mapping of limbic seizure progressions utilizing the electrogenic status epilepticus model and the 14C-2-deoxyglucose method.
    Handforth A; Ackermann RF
    Brain Res Brain Res Rev; 1995 Jan; 20(1):1-23. PubMed ID: 7711764
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Profound disturbances of pre- and postsynaptic GABAB-receptor-mediated processes in region CA1 in a chronic model of temporal lobe epilepsy.
    Mangan PS; Lothman EW
    J Neurophysiol; 1996 Aug; 76(2):1282-96. PubMed ID: 8871236
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Changes in excitatory neurotransmission in the CA1 region and dentate gyrus in a chronic model of temporal lobe epilepsy.
    Lothman EW; Rempe DA; Mangan PS
    J Neurophysiol; 1995 Aug; 74(2):841-8. PubMed ID: 7472387
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interneurons in area CA1 stratum radiatum and stratum oriens remain functionally connected to excitatory synaptic input in chronically epileptic animals.
    Rempe DA; Bertram EH; Williamson JM; Lothman EW
    J Neurophysiol; 1997 Sep; 78(3):1504-15. PubMed ID: 9310439
    [TBL] [Abstract][Full Text] [Related]  

  • 11. On-demand pulsatile intracerebral delivery of carisbamate with closed-loop direct neurostimulation therapy in an electrically induced self-sustained focal-onset epilepsy rat model.
    Mangubat EZ; Kellogg RG; Harris TJ; Rossi MA
    J Neurosurg; 2015 Jun; 122(6):1283-92. PubMed ID: 25723302
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A model of status epilepticus based on electrical stimulation of hippocampal afferent pathways.
    Vicedomini JP; Nadler JV
    Exp Neurol; 1987 Jun; 96(3):681-91. PubMed ID: 3582552
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regional heterogeneity of pathophysiological alterations in CA1 and dentate gyrus in a chronic model of temporal lobe epilepsy.
    Rempe DA; Mangan PS; Lothman EW
    J Neurophysiol; 1995 Aug; 74(2):816-28. PubMed ID: 7472385
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Self-sustaining status epilepticus after a brief electrical stimulation of the perforant path: a 2-deoxyglucose study.
    Pereira de Vasconcelos A; Mazarati AM; Wasterlain CG; Nehlig A
    Brain Res; 1999 Aug; 838(1-2):110-8. PubMed ID: 10446323
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Distribution of [14C]2-deoxyglucose after various forms and durations of status epilepticus induced by stimulation of a kindled amygdala focus in rats.
    McIntyre DC; Don JC; Edson N
    Epilepsy Res; 1991; 10(2-3):119-33. PubMed ID: 1817953
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The functional anatomy of limbic status epilepticus in the rat. II. The effects of focal deactivation.
    White LE; Price JL
    J Neurosci; 1993 Nov; 13(11):4810-30. PubMed ID: 8229200
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Loss of type II calcium/calmodulin-dependent kinase activity correlates with stages of development of electrographic seizures in status epilepticus in rat.
    Perlin JB; Churn SB; Lothman EW; DeLorenzo RJ
    Epilepsy Res; 1992 Apr; 11(2):111-8. PubMed ID: 1319899
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Functional mapping of limbic seizures originating in the hippocampus: a combined 2-deoxyglucose and electrophysiologic study.
    Lothman EW; Hatlelid JM; Zorumski CF
    Brain Res; 1985 Dec; 360(1-2):92-100. PubMed ID: 4075185
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrogenic status epilepticus induced from numerous limbic sites.
    Handforth A; Ackermann RF
    Epilepsy Res; 1993 May; 15(1):21-6. PubMed ID: 8325275
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Changes in inhibitory neurotransmission in the CA1 region and dentate gyrus in a chronic model of temporal lobe epilepsy.
    Mangan PS; Rempe DA; Lothman EW
    J Neurophysiol; 1995 Aug; 74(2):829-40. PubMed ID: 7472386
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.