These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 1745364)

  • 1. EMG spectral shift- and 31P-NMR-determined intracellular pH in fatigued human biceps brachii muscle.
    Béliveau L; Helal JN; Gaillard E; Van Hoecke J; Atlan G; Bouissou P
    Neurology; 1991 Dec; 41(12):1998-2001. PubMed ID: 1745364
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Myoelectrical and metabolic changes in muscle fatigue.
    Béliveau L; Van Hoecke J; Garapon-Bar C; Gaillard E; Herry JP; Atlan G; Bouissou P
    Int J Sports Med; 1992 Oct; 13 Suppl 1():S153-5. PubMed ID: 1483758
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Simultaneous electromyography and 31P nuclear magnetic resonance spectroscopy--with application to muscle fatigue.
    Vestergaard-Poulsen P; Thomsen C; Sinkjaer T; Stubgaard M; Rosenfalck A; Henriksen O
    Electroencephalogr Clin Neurophysiol; 1992 Dec; 85(6):402-11. PubMed ID: 1282459
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simultaneous 31P NMR spectroscopy and EMG in exercising and recovering human skeletal muscle: technical aspects.
    Vestergaard-Poulsen P; Thomsen C; Sinkjaer T; Henriksen O
    Magn Reson Med; 1994 Feb; 31(2):93-102. PubMed ID: 8133762
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electromyogram spectrum changes during sustained contraction related to proton and diprotonated inorganic phosphate accumulation: a 31P nuclear magnetic resonance study on human calf muscles.
    Laurent D; Portero P; Goubel F; Rossi A
    Eur J Appl Physiol Occup Physiol; 1993; 66(3):263-8. PubMed ID: 8386617
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Eccentric muscle damage increases intermuscular coherence during a fatiguing isometric contraction.
    Semmler JG; Ebert SA; Amarasena J
    Acta Physiol (Oxf); 2013 Aug; 208(4):362-75. PubMed ID: 23621345
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of fatiguing exercise on high-energy phosphates, force, and EMG: evidence for three phases of recovery.
    Miller RG; Giannini D; Milner-Brown HS; Layzer RB; Koretsky AP; Hooper D; Weiner MW
    Muscle Nerve; 1987; 10(9):810-21. PubMed ID: 3683452
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Frequency analysis of surface EMG to evaluation of muscle fatigue.
    Sadoyama T; Miyano H
    Eur J Appl Physiol Occup Physiol; 1981; 47(3):239-46. PubMed ID: 7198034
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recovery following exhaustive dynamic exercise in the human biceps muscle.
    Kroon GW; Naeije M
    Eur J Appl Physiol Occup Physiol; 1988; 58(3):228-32. PubMed ID: 3220060
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Neural compensation for muscular fatigue: evidence for significant force regulation in man.
    Kirsch RF; Rymer WZ
    J Neurophysiol; 1987 Jun; 57(6):1893-910. PubMed ID: 3598635
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electromyogram and mechanomyogram changes in fresh and fatigued muscle during sustained contraction in men.
    Esposito F; Orizio C; Veicsteinas A
    Eur J Appl Physiol Occup Physiol; 1998 Nov; 78(6):494-501. PubMed ID: 9840403
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Changes in force and intracellular metabolites during fatigue of human skeletal muscle.
    Cady EB; Jones DA; Lynn J; Newham DJ
    J Physiol; 1989 Nov; 418():311-25. PubMed ID: 2621621
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Changes in soleus motoneuron pool reflex excitability and surface EMG parameters during fatiguing low- vs. high-intensity isometric contractions.
    Pääsuke M; Rannama L; Ereline J; Gapeyeva H; Oöpik V
    Electromyogr Clin Neurophysiol; 2007; 47(7-8):341-50. PubMed ID: 18051628
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Simultaneous measurement of muscle conduction velocity and EMG power spectrum changes during fatigue.
    Eberstein A; Beattie B
    Muscle Nerve; 1985; 8(9):768-73. PubMed ID: 4079955
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The fatigue of rapid repetitive movements.
    Miller RG; Moussavi RS; Green AT; Carson PJ; Weiner MW
    Neurology; 1993 Apr; 43(4):755-61. PubMed ID: 8469336
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Surface EMG power spectrum and intramuscular pH in human vastus lateralis muscle during dynamic exercise.
    Bouissou P; Estrade PY; Goubel F; Guezennec CY; Serrurier B
    J Appl Physiol (1985); 1989 Sep; 67(3):1245-9. PubMed ID: 2793717
    [TBL] [Abstract][Full Text] [Related]  

  • 17. EMG spectral shift as an indicator of fatigability in an heterogeneous muscle group.
    Duchêne J; Goubel F
    Eur J Appl Physiol Occup Physiol; 1990; 61(1-2):81-7. PubMed ID: 2289502
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Neural compensation for fatigue-induced changes in muscle stiffness during perturbations of elbow angle in human.
    Kirsch RF; Rymer WZ
    J Neurophysiol; 1992 Aug; 68(2):449-70. PubMed ID: 1527569
    [TBL] [Abstract][Full Text] [Related]  

  • 19. EMG frequency during isometric, submaximal activity: a statistical model for biceps brachii.
    Solnik S; DeVita P; Grzegorczyk K; Koziatek A; Bober T
    Acta Bioeng Biomech; 2010; 12(3):21-8. PubMed ID: 21243967
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metabolic and myoelectrical effects of acute hypoxaemia during isometric contraction of forearm muscles in humans: a combined 31P-magnetic resonance spectroscopy-surface electromyogram (MRS-SEMG) study.
    Bendahan D; Badier M; Jammes Y; Confort-Gouny S; Salvan AM; Guillot C; Cozzone PJ
    Clin Sci (Lond); 1998 Mar; 94(3):279-86. PubMed ID: 9616262
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.