BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 1745364)

  • 1. EMG spectral shift- and 31P-NMR-determined intracellular pH in fatigued human biceps brachii muscle.
    Béliveau L; Helal JN; Gaillard E; Van Hoecke J; Atlan G; Bouissou P
    Neurology; 1991 Dec; 41(12):1998-2001. PubMed ID: 1745364
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Myoelectrical and metabolic changes in muscle fatigue.
    Béliveau L; Van Hoecke J; Garapon-Bar C; Gaillard E; Herry JP; Atlan G; Bouissou P
    Int J Sports Med; 1992 Oct; 13 Suppl 1():S153-5. PubMed ID: 1483758
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Simultaneous electromyography and 31P nuclear magnetic resonance spectroscopy--with application to muscle fatigue.
    Vestergaard-Poulsen P; Thomsen C; Sinkjaer T; Stubgaard M; Rosenfalck A; Henriksen O
    Electroencephalogr Clin Neurophysiol; 1992 Dec; 85(6):402-11. PubMed ID: 1282459
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simultaneous 31P NMR spectroscopy and EMG in exercising and recovering human skeletal muscle: technical aspects.
    Vestergaard-Poulsen P; Thomsen C; Sinkjaer T; Henriksen O
    Magn Reson Med; 1994 Feb; 31(2):93-102. PubMed ID: 8133762
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electromyogram spectrum changes during sustained contraction related to proton and diprotonated inorganic phosphate accumulation: a 31P nuclear magnetic resonance study on human calf muscles.
    Laurent D; Portero P; Goubel F; Rossi A
    Eur J Appl Physiol Occup Physiol; 1993; 66(3):263-8. PubMed ID: 8386617
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Eccentric muscle damage increases intermuscular coherence during a fatiguing isometric contraction.
    Semmler JG; Ebert SA; Amarasena J
    Acta Physiol (Oxf); 2013 Aug; 208(4):362-75. PubMed ID: 23621345
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of fatiguing exercise on high-energy phosphates, force, and EMG: evidence for three phases of recovery.
    Miller RG; Giannini D; Milner-Brown HS; Layzer RB; Koretsky AP; Hooper D; Weiner MW
    Muscle Nerve; 1987; 10(9):810-21. PubMed ID: 3683452
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Frequency analysis of surface EMG to evaluation of muscle fatigue.
    Sadoyama T; Miyano H
    Eur J Appl Physiol Occup Physiol; 1981; 47(3):239-46. PubMed ID: 7198034
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recovery following exhaustive dynamic exercise in the human biceps muscle.
    Kroon GW; Naeije M
    Eur J Appl Physiol Occup Physiol; 1988; 58(3):228-32. PubMed ID: 3220060
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Neural compensation for muscular fatigue: evidence for significant force regulation in man.
    Kirsch RF; Rymer WZ
    J Neurophysiol; 1987 Jun; 57(6):1893-910. PubMed ID: 3598635
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electromyogram and mechanomyogram changes in fresh and fatigued muscle during sustained contraction in men.
    Esposito F; Orizio C; Veicsteinas A
    Eur J Appl Physiol Occup Physiol; 1998 Nov; 78(6):494-501. PubMed ID: 9840403
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Changes in force and intracellular metabolites during fatigue of human skeletal muscle.
    Cady EB; Jones DA; Lynn J; Newham DJ
    J Physiol; 1989 Nov; 418():311-25. PubMed ID: 2621621
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Changes in soleus motoneuron pool reflex excitability and surface EMG parameters during fatiguing low- vs. high-intensity isometric contractions.
    Pääsuke M; Rannama L; Ereline J; Gapeyeva H; Oöpik V
    Electromyogr Clin Neurophysiol; 2007; 47(7-8):341-50. PubMed ID: 18051628
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Simultaneous measurement of muscle conduction velocity and EMG power spectrum changes during fatigue.
    Eberstein A; Beattie B
    Muscle Nerve; 1985; 8(9):768-73. PubMed ID: 4079955
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The fatigue of rapid repetitive movements.
    Miller RG; Moussavi RS; Green AT; Carson PJ; Weiner MW
    Neurology; 1993 Apr; 43(4):755-61. PubMed ID: 8469336
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Surface EMG power spectrum and intramuscular pH in human vastus lateralis muscle during dynamic exercise.
    Bouissou P; Estrade PY; Goubel F; Guezennec CY; Serrurier B
    J Appl Physiol (1985); 1989 Sep; 67(3):1245-9. PubMed ID: 2793717
    [TBL] [Abstract][Full Text] [Related]  

  • 17. EMG spectral shift as an indicator of fatigability in an heterogeneous muscle group.
    Duchêne J; Goubel F
    Eur J Appl Physiol Occup Physiol; 1990; 61(1-2):81-7. PubMed ID: 2289502
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Neural compensation for fatigue-induced changes in muscle stiffness during perturbations of elbow angle in human.
    Kirsch RF; Rymer WZ
    J Neurophysiol; 1992 Aug; 68(2):449-70. PubMed ID: 1527569
    [TBL] [Abstract][Full Text] [Related]  

  • 19. EMG frequency during isometric, submaximal activity: a statistical model for biceps brachii.
    Solnik S; DeVita P; Grzegorczyk K; Koziatek A; Bober T
    Acta Bioeng Biomech; 2010; 12(3):21-8. PubMed ID: 21243967
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metabolic and myoelectrical effects of acute hypoxaemia during isometric contraction of forearm muscles in humans: a combined 31P-magnetic resonance spectroscopy-surface electromyogram (MRS-SEMG) study.
    Bendahan D; Badier M; Jammes Y; Confort-Gouny S; Salvan AM; Guillot C; Cozzone PJ
    Clin Sci (Lond); 1998 Mar; 94(3):279-86. PubMed ID: 9616262
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.