These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 17453849)

  • 1. Temporal variations of coagulation factor VII activity in mice are influenced by lighting regime.
    Colognesi I; Pasquali V; Foà A; Renzi P; Bernardi F; Bertolucci C; Pinotti M
    Chronobiol Int; 2007; 24(2):305-13. PubMed ID: 17453849
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Daily and circadian rhythms of tissue factor pathway inhibitor and factor VII activity.
    Pinotti M; Bertolucci C; Portaluppi F; Colognesi I; Frigato E; Foà A; Bernardi F
    Arterioscler Thromb Vasc Biol; 2005 Mar; 25(3):646-9. PubMed ID: 15604416
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Forced desynchronization of activity rhythms in a model of chronic jet lag in mice.
    Casiraghi LP; Oda GA; Chiesa JJ; Friesen WO; Golombek DA
    J Biol Rhythms; 2012 Feb; 27(1):59-69. PubMed ID: 22306974
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Circadian rhythms in mouse blood coagulation.
    Bertolucci C; Pinotti M; Colognesi I; Foà A; Bernardi F; Portaluppi F
    J Biol Rhythms; 2005 Jun; 20(3):219-24. PubMed ID: 15851528
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simulated Chronic Jet Lag Affects the Structural and Functional Complexity of Hippocampal Neurons in Mice.
    Kumari R; Verma V; Singaravel M
    Neuroscience; 2024 Apr; 543():1-12. PubMed ID: 38354900
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhanced phase resetting in the synchronized suprachiasmatic nucleus network.
    Ramkisoensing A; Gu C; van Engeldorp Gastelaars HM; Michel S; Deboer T; Rohling JH; Meijer JH
    J Biol Rhythms; 2014 Feb; 29(1):4-15. PubMed ID: 24492878
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Circadian disruption in experimental cancer processes.
    Filipski E; Lévi F
    Integr Cancer Ther; 2009 Dec; 8(4):298-302. PubMed ID: 20042408
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evidence for an overlapping role of CLOCK and NPAS2 transcription factors in liver circadian oscillators.
    Bertolucci C; Cavallari N; Colognesi I; Aguzzi J; Chen Z; Caruso P; Foá A; Tosini G; Bernardi F; Pinotti M
    Mol Cell Biol; 2008 May; 28(9):3070-5. PubMed ID: 18316400
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Use of a social jetlag-mimicking mouse model to determine the effects of a two-day delayed light- and/or feeding-shift on central and peripheral clock rhythms plus cognitive functioning.
    Haraguchi A; Nishimura Y; Fukuzawa M; Kikuchi Y; Tahara Y; Shibata S
    Chronobiol Int; 2021 Mar; 38(3):426-442. PubMed ID: 33345638
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Circadian disruption accelerates liver carcinogenesis in mice.
    Filipski E; Subramanian P; Carrière J; Guettier C; Barbason H; Lévi F
    Mutat Res; 2009; 680(1-2):95-105. PubMed ID: 19833225
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of chronic jet lag on the central and peripheral circadian clocks in CBA/N mice.
    Iwamoto A; Kawai M; Furuse M; Yasuo S
    Chronobiol Int; 2014 Mar; 31(2):189-98. PubMed ID: 24147659
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Daily and annual variations of free fatty acid, glycerol and leptin plasma concentrations in goats (Capra hircus) under different photoperiods.
    Alila-Johansson A; Eriksson L; Soveri T; Laakso ML
    Comp Biochem Physiol A Mol Integr Physiol; 2004 Jun; 138(2):119-31. PubMed ID: 15275646
    [TBL] [Abstract][Full Text] [Related]  

  • 13. c-Fos rhythm in subdivisions of the rat suprachiasmatic nucleus under artificial and natural photoperiods.
    Jác M; Sumová A; Illnerová H
    Am J Physiol Regul Integr Comp Physiol; 2000 Dec; 279(6):R2270-6. PubMed ID: 11080095
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Photoperiodic modulation of adrenal gland function in the rhesus macaque: effect on 24-h plasma cortisol and dehydroepiandrosterone sulfate rhythms and adrenal gland gene expression.
    Lemos DR; Downs JL; Raitiere MN; Urbanski HF
    J Endocrinol; 2009 May; 201(2):275-85. PubMed ID: 19223397
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adaptation to experimental jet-lag in R6/2 mice despite circadian dysrhythmia.
    Wood NI; McAllister CJ; Cuesta M; Aungier J; Fraenkel E; Morton AJ
    PLoS One; 2013; 8(2):e55036. PubMed ID: 23390510
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of chronic forced circadian desynchronization on body weight and metabolism in male mice.
    Casiraghi LP; Alzamendi A; Giovambattista A; Chiesa JJ; Golombek DA
    Physiol Rep; 2016 Apr; 4(8):. PubMed ID: 27125665
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Food anticipatory circadian rhythms in mice entrained to long or short day photoperiods.
    Power SC; Mistlberger RE
    Physiol Behav; 2020 Aug; 222():112939. PubMed ID: 32407832
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The endogenous melatonin (MT) signal facilitates reentrainment of the circadian system to light-induced phase advances by acting upon MT2 receptors.
    Pfeffer M; Rauch A; Korf HW; von Gall C
    Chronobiol Int; 2012 May; 29(4):415-29. PubMed ID: 22489607
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Daily rhythms of clock gene expression and feeding behavior during the larval development in gilthead seabream, Sparus aurata.
    Mata-Sotres JA; Martínez-Rodríguez G; Pérez-Sánchez J; Sánchez-Vázquez FJ; Yúfera M
    Chronobiol Int; 2015; 32(8):1061-74. PubMed ID: 26317659
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The daily rhythms of melatonin and free fatty acids in goats under varying photoperiods and constant darkness.
    Alila-Johansson A; Eriksson L; Soveri T; Laakso ML
    Chronobiol Int; 2006; 23(3):565-81. PubMed ID: 16753942
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.