BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

280 related articles for article (PubMed ID: 17454253)

  • 1. Assessment of metal nanoparticle agglomeration, uptake, and interaction using high-illuminating system.
    Skebo JE; Grabinski CM; Schrand AM; Schlager JJ; Hussain SM
    Int J Toxicol; 2007; 26(2):135-41. PubMed ID: 17454253
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of nanomaterial dispersion in solution prior to in vitro exposure using dynamic light scattering technique.
    Murdock RC; Braydich-Stolle L; Schrand AM; Schlager JJ; Hussain SM
    Toxicol Sci; 2008 Feb; 101(2):239-53. PubMed ID: 17872897
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cellular interaction of different forms of aluminum nanoparticles in rat alveolar macrophages.
    Wagner AJ; Bleckmann CA; Murdock RC; Schrand AM; Schlager JJ; Hussain SM
    J Phys Chem B; 2007 Jun; 111(25):7353-9. PubMed ID: 17547441
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Agglomeration of tungsten carbide nanoparticles in exposure medium does not prevent uptake and toxicity toward a rainbow trout gill cell line.
    Kühnel D; Busch W; Meissner T; Springer A; Potthoff A; Richter V; Gelinsky M; Scholz S; Schirmer K
    Aquat Toxicol; 2009 Jun; 93(2-3):91-9. PubMed ID: 19439373
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Unique cellular interaction of silver nanoparticles: size-dependent generation of reactive oxygen species.
    Carlson C; Hussain SM; Schrand AM; Braydich-Stolle LK; Hess KL; Jones RL; Schlager JJ
    J Phys Chem B; 2008 Oct; 112(43):13608-19. PubMed ID: 18831567
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dispersion characteristics of various metal oxide secondary nanoparticles in culture medium for in vitro toxicology assessment.
    Kato H; Fujita K; Horie M; Suzuki M; Nakamura A; Endoh S; Yoshida Y; Iwahashi H; Takahashi K; Kinugasa S
    Toxicol In Vitro; 2010 Apr; 24(3):1009-18. PubMed ID: 20006982
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The impact of different nanoparticle surface chemistry and size on uptake and toxicity in a murine macrophage cell line.
    Clift MJ; Rothen-Rutishauser B; Brown DM; Duffin R; Donaldson K; Proudfoot L; Guy K; Stone V
    Toxicol Appl Pharmacol; 2008 Nov; 232(3):418-27. PubMed ID: 18708083
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of cytotoxic and inflammatory responses of photoluminescent silicon nanoparticles with silicon micron-sized particles in RAW 264.7 macrophages.
    Choi J; Zhang Q; Reipa V; Wang NS; Stratmeyer ME; Hitchins VM; Goering PL
    J Appl Toxicol; 2009 Jan; 29(1):52-60. PubMed ID: 18785685
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adsorption of organic acids on TiO2 nanoparticles: effects of pH, nanoparticle size, and nanoparticle aggregation.
    Pettibone JM; Cwiertny DM; Scherer M; Grassian VH
    Langmuir; 2008 Jun; 24(13):6659-67. PubMed ID: 18537279
    [TBL] [Abstract][Full Text] [Related]  

  • 10. One-step preparation of rifampicin/poly(lactic-co-glycolic acid) nanoparticle-containing mannitol microspheres using a four-fluid nozzle spray drier for inhalation therapy of tuberculosis.
    Ohashi K; Kabasawa T; Ozeki T; Okada H
    J Control Release; 2009 Apr; 135(1):19-24. PubMed ID: 19121349
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterisation of the de-agglomeration effects of bovine serum albumin on nanoparticles in aqueous suspension.
    Tantra R; Tompkins J; Quincey P
    Colloids Surf B Biointerfaces; 2010 Jan; 75(1):275-81. PubMed ID: 19775871
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Agglomeration and sedimentation of TiO2 nanoparticles in cell culture medium.
    Allouni ZE; Cimpan MR; Høl PJ; Skodvin T; Gjerdet NR
    Colloids Surf B Biointerfaces; 2009 Jan; 68(1):83-7. PubMed ID: 18980834
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The surface modification of silver nanoparticles by phosphoryl disulfides for improved biocompatibility and intracellular uptake.
    Chung YC; Chen IH; Chen CJ
    Biomaterials; 2008 Apr; 29(12):1807-16. PubMed ID: 18242693
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Radiopaque iodinated copolymeric nanoparticles for X-ray imaging applications.
    Aviv H; Bartling S; Kieslling F; Margel S
    Biomaterials; 2009 Oct; 30(29):5610-6. PubMed ID: 19592085
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Formation mechanism of colloidal nanoparticles obtained from probucol/PVP/SDS ternary ground mixture.
    Pongpeerapat A; Wanawongthai C; Tozuka Y; Moribe K; Yamamoto K
    Int J Pharm; 2008 Mar; 352(1-2):309-16. PubMed ID: 18162340
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biodegradable nanoparticle flocculates for dry powder aerosol formulation.
    Shi L; Plumley CJ; Berkland C
    Langmuir; 2007 Oct; 23(22):10897-901. PubMed ID: 17894513
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantitative assessment of the comparative nanoparticle-uptake efficiency of a range of cell lines.
    dos Santos T; Varela J; Lynch I; Salvati A; Dawson KA
    Small; 2011 Dec; 7(23):3341-9. PubMed ID: 22009913
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Physico-chemical characterization in the light of toxicological effects.
    Meissner T; Potthoff A; Richter V
    Inhal Toxicol; 2009 Jul; 21 Suppl 1():35-9. PubMed ID: 19558232
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Prednisolone multicomponent nanoparticle preparation by aerosol solvent extraction system.
    Moribe K; Fukino M; Tozuka Y; Higashi K; Yamamoto K
    Int J Pharm; 2009 Oct; 380(1-2):201-5. PubMed ID: 19576974
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nanoparticle interactions with zinc and iron: implications for toxicology and inflammation.
    Wilson MR; Foucaud L; Barlow PG; Hutchison GR; Sales J; Simpson RJ; Stone V
    Toxicol Appl Pharmacol; 2007 Nov; 225(1):80-9. PubMed ID: 17900645
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.