BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

280 related articles for article (PubMed ID: 17454253)

  • 21. Functional gold nanoparticle-peptide complexes as cell-targeting agents.
    Sun L; Liu D; Wang Z
    Langmuir; 2008 Sep; 24(18):10293-7. PubMed ID: 18715022
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A general procedure to functionalize agglomerating nanoparticles demonstrated on nanodiamond.
    Liang Y; Ozawa M; Krueger A
    ACS Nano; 2009 Aug; 3(8):2288-96. PubMed ID: 19601635
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Interaction of metal oxide nanoparticles with lung surfactant protein A.
    Schulze C; Schaefer UF; Ruge CA; Wohlleben W; Lehr CM
    Eur J Pharm Biopharm; 2011 Apr; 77(3):376-83. PubMed ID: 21056657
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Microfluidic system for studying the interaction of nanoparticles and microparticles with cells.
    Farokhzad OC; Khademhosseini A; Jon S; Hermmann A; Cheng J; Chin C; Kiselyuk A; Teply B; Eng G; Langer R
    Anal Chem; 2005 Sep; 77(17):5453-9. PubMed ID: 16131052
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effect of microemulsion variables on copper oxide nanoparticle uptake by AOT microemulsions.
    Nassar NN; Husein MM
    J Colloid Interface Sci; 2007 Dec; 316(2):442-50. PubMed ID: 17889890
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Comparative study of pulmonary responses to nano- and submicron-sized ferric oxide in rats.
    Zhu MT; Feng WY; Wang B; Wang TC; Gu YQ; Wang M; Wang Y; Ouyang H; Zhao YL; Chai ZF
    Toxicology; 2008 May; 247(2-3):102-11. PubMed ID: 18394769
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Imaging nanoparticles in cells by nanomechanical holography.
    Tetard L; Passian A; Venmar KT; Lynch RM; Voy BH; Shekhawat G; Dravid VP; Thundat T
    Nat Nanotechnol; 2008 Aug; 3(8):501-5. PubMed ID: 18685639
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Differential plasma protein binding to metal oxide nanoparticles.
    Deng ZJ; Mortimer G; Schiller T; Musumeci A; Martin D; Minchin RF
    Nanotechnology; 2009 Nov; 20(45):455101. PubMed ID: 19822937
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Submicrometer and nanoscale inorganic particles exploit the actin machinery to be propelled along microvilli-like structures into alveolar cells.
    Orr G; Panther DJ; Phillips JL; Tarasevich BJ; Dohnalkova A; Hu D; Teeguarden JG; Pounds JG
    ACS Nano; 2007 Dec; 1(5):463-75. PubMed ID: 19206668
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Water uptake coefficients and deliquescence of NaCl nanoparticles at atmospheric relative humidities from molecular dynamics simulations.
    Bahadur R; Russell LM
    J Chem Phys; 2008 Sep; 129(9):094508. PubMed ID: 19044878
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A study of nanomaterial dispersion in solution by wet-cell transmission electron microscopy.
    Franks R; Morefield S; Wen J; Liao D; Alvarado J; Strano M; Marsh C
    J Nanosci Nanotechnol; 2008 Sep; 8(9):4404-7. PubMed ID: 19049033
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A nanoparticle dispersion method for in vitro and in vivo nanotoxicity study.
    Kim SC; Chen DR; Qi C; Gelein RM; Finkelstein JN; Elder A; Bentley K; Oberdörster G; Pui DY
    Nanotoxicology; 2010 Mar; 4(1):42-51. PubMed ID: 20795901
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Radiosensitization of paclitaxel, etanidazole and paclitaxel+etanidazole nanoparticles on hypoxic human tumor cells in vitro.
    Jin C; Bai L; Wu H; Tian F; Guo G
    Biomaterials; 2007 Sep; 28(25):3724-30. PubMed ID: 17509678
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Oxidative stress contributes to silica nanoparticle-induced cytotoxicity in human embryonic kidney cells.
    Wang F; Gao F; Lan M; Yuan H; Huang Y; Liu J
    Toxicol In Vitro; 2009 Aug; 23(5):808-15. PubMed ID: 19401228
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Hygroscopic growth and deliquescence of NaCl nanoparticles mixed with surfactant SDS.
    Harmon CW; Grimm RL; McIntire TM; Peterson MD; Njegic B; Angel VM; Alshawa A; Underwood JS; Tobias DJ; Gerber RB; Gordon MS; Hemminger JC; Nizkorodov SA
    J Phys Chem B; 2010 Feb; 114(7):2435-49. PubMed ID: 20108956
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Cytotoxicity of titanium dioxide nanoparticles in mouse fibroblast cells.
    Jin CY; Zhu BS; Wang XF; Lu QH
    Chem Res Toxicol; 2008 Sep; 21(9):1871-7. PubMed ID: 18680314
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A nanoparticle-based model delivery system to guide the rational design of gene delivery to the liver. 2. In vitro and in vivo uptake results.
    Popielarski SR; Hu-Lieskovan S; French SW; Triche TJ; Davis ME
    Bioconjug Chem; 2005; 16(5):1071-80. PubMed ID: 16173782
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Importance of agglomeration state and exposure conditions for uptake and pro-inflammatory responses to amorphous silica nanoparticles in bronchial epithelial cells.
    Gualtieri M; Skuland T; Iversen TG; Låg M; Schwarze P; Bilaničová D; Pojana G; Refsnes M
    Nanotoxicology; 2012 Nov; 6(7):700-12. PubMed ID: 21793771
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Structure and activity of apoferritin-stabilized gold nanoparticles.
    Zhang L; Swift J; Butts CA; Yerubandi V; Dmochowski IJ
    J Inorg Biochem; 2007 Nov; 101(11-12):1719-29. PubMed ID: 17723241
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Stable nanoparticle aggregates/agglomerates of different sizes and the effect of their size on hemolytic cytotoxicity.
    Zook JM; Maccuspie RI; Locascio LE; Halter MD; Elliott JT
    Nanotoxicology; 2011 Dec; 5(4):517-30. PubMed ID: 21142841
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.