These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

361 related articles for article (PubMed ID: 17454404)

  • 41. Fault-tolerant strategies for an implantable centrifugal blood pump using a radially controlled magnetic bearing.
    Pai CN; Shinshi T
    Med Eng Phys; 2011 Oct; 33(8):906-15. PubMed ID: 21382738
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Magnetic drive system for a new centrifugal rotary blood pump.
    Hilton A; Tansley G
    Artif Organs; 2008 Oct; 32(10):772-7. PubMed ID: 18959665
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Evaluation of floating impeller phenomena in a Gyro centrifugal pump.
    Nishimura I; Ichikawa S; Mikami M; Ishitoya H; Motomura T; Kawamura M; Linneweber J; Glueck J; Shinohara T; Nosé Y
    Biomed Mater Eng; 2013; 23(1-2):49-55. PubMed ID: 23442236
    [TBL] [Abstract][Full Text] [Related]  

  • 44. In vivo evaluation of the "TinyPump" as a pediatric left ventricular assist device.
    Kitao T; Ando Y; Yoshikawa M; Kobayashi M; Kimura T; Ohsawa H; Machida S; Yokoyama N; Sakota D; Konno T; Ishihara K; Takatani S
    Artif Organs; 2011 May; 35(5):543-53. PubMed ID: 21595723
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Third-generation blood pumps with mechanical noncontact magnetic bearings.
    Hoshi H; Shinshi T; Takatani S
    Artif Organs; 2006 May; 30(5):324-38. PubMed ID: 16683949
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Design and numeric evaluation of a novel axial-flow left ventricular assist device.
    Toptop K; Kadipasaoglu KA
    ASAIO J; 2013; 59(3):230-9. PubMed ID: 23644609
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Dynamic motion analysis of impeller for the development of real-time flow rate estimations of a ventricular assist device.
    Shida S; Masuzawa T; Osa M
    Int J Artif Organs; 2022 Jan; 45(1):52-59. PubMed ID: 33356771
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Design analysis and performance assessment of hybrid magnetic bearings for a rotary centrifugal blood pump.
    Ren Z; Jahanmir S; Heshmat H; Hunsberger AZ; Walton JF
    ASAIO J; 2009; 55(4):340-7. PubMed ID: 19381082
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Development of a disposable maglev centrifugal blood pump intended for one-month support in bridge-to-bridge applications: in vitro and initial in vivo evaluation.
    Someya T; Kobayashi M; Waguri S; Ushiyama T; Nagaoka E; Hijikata W; Shinshi T; Arai H; Takatani S
    Artif Organs; 2009 Sep; 33(9):704-13. PubMed ID: 19775262
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Evaluation of left ventricular assist device performance and hydraulic force in a complete mock circulation loop.
    Timms D; Hayne M; Tan A; Pearcy M
    Artif Organs; 2005 Jul; 29(7):573-80. PubMed ID: 15982286
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A new design for a compact centrifugal blood pump with a magnetically levitated rotor.
    Asama J; Shinshi T; Hoshi H; Takatani S; Shimokohbe A
    ASAIO J; 2004; 50(6):550-6. PubMed ID: 15672787
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Evaluation of hydraulic radial forces on the impeller by the volute in a centrifugal rotary blood pump.
    Boehning F; Timms DL; Amaral F; Oliveira L; Graefe R; Hsu PL; Schmitz-Rode T; Steinseifer U
    Artif Organs; 2011 Aug; 35(8):818-25. PubMed ID: 21843297
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Quantitative approach to control spinning stability of the impeller in the pivot bearing-supported centrifugal pump.
    Takami Y; Makinouchi K; Otsuka G; Nosé Y
    Artif Organs; 1997 Dec; 21(12):1292-6. PubMed ID: 9423982
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Parameter estimation and actuator characteristics of hybrid magnetic bearings for axial flow blood pump applications.
    Lim TM; Cheng S; Chua LP
    Artif Organs; 2009 Jul; 33(7):509-31. PubMed ID: 19566728
    [TBL] [Abstract][Full Text] [Related]  

  • 55. World-smallest LVAD with 27 g weight, 21 mm OD and 5 l min-1 flow with 50 mmHg pressure increase.
    Qian KX; Wang DF; Topaz S; Ru WM; Zeng P; Yuan HY; Zwischenberg JB
    J Med Eng Technol; 2007; 31(3):181-4. PubMed ID: 17454406
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Magnetically suspended centrifugal blood pump with a radial magnetic driver.
    Hoshi H; Katakoa K; Ohuchi K; Asama J; Shinshi T; Shimokohbe A; Takatani S
    ASAIO J; 2005; 51(1):60-4. PubMed ID: 15745136
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Single axis controlled hybrid magnetic bearing for left ventricular assist device: hybrid core and closed magnetic circuit.
    da Silva I; Horikawa O; Cardoso JR; Camargo FA; Andrade AJ; Bock EG
    Artif Organs; 2011 May; 35(5):448-53. PubMed ID: 21595710
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Influence of radial clearance and rotor motion to hemolysis in a journal bearing of a centrifugal blood pump.
    Kataoka H; Kimura Y; Fujita H; Takatani S
    Artif Organs; 2006 Nov; 30(11):841-54. PubMed ID: 17062107
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Hemolytic performance of a MagLev disposable rotary blood pump (MedTech Dispo): effects of MagLev gap clearance and surface roughness.
    Hoshi H; Asama J; Hijikata W; Hara C; Shinshi T; Yasuda T; Ohuchi K; Shimokohbe A; Takatani S
    Artif Organs; 2006 Dec; 30(12):949-54. PubMed ID: 17181835
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Impeller behavior and displacement of the VentrAssist implantable rotary blood pump.
    Chung MK; Zhang N; Tansley GD; Woodard JC
    Artif Organs; 2004 Mar; 28(3):287-97. PubMed ID: 15046628
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.