These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
124 related articles for article (PubMed ID: 17454432)
1. Comparison of alpha-tocopherol microparticles produced with different wall materials: pea protein a new interesting alternative. Pierucci AP; Andrade LR; Farina M; Pedrosa C; Rocha-Leão MH J Microencapsul; 2007 May; 24(3):201-13. PubMed ID: 17454432 [TBL] [Abstract][Full Text] [Related]
2. New microencapsulation system for ascorbic acid using pea protein concentrate as coat protector. Pierucci AP; Andrade LR; Baptista EB; Volpato NM; Rocha-Leão MH J Microencapsul; 2006 Sep; 23(6):654-62. PubMed ID: 17118881 [TBL] [Abstract][Full Text] [Related]
3. Effective stabilization of CLA by microencapsulation in pea protein. Costa AM; Nunes JC; Lima BN; Pedrosa C; Calado V; Torres AG; Pierucci AP Food Chem; 2015 Feb; 168():157-66. PubMed ID: 25172695 [TBL] [Abstract][Full Text] [Related]
4. Microencapsulation of nanoemulsions: novel Trojan particles for bioactive lipid molecule delivery. Li X; Anton N; Ta TM; Zhao M; Messaddeq N; Vandamme TF Int J Nanomedicine; 2011; 6():1313-25. PubMed ID: 21760727 [TBL] [Abstract][Full Text] [Related]
5. Effect of limited proteolysis and CaCl Nourmohammadi N; Campanella OH; Chen D Food Res Int; 2024 Jul; 188():114474. PubMed ID: 38823865 [TBL] [Abstract][Full Text] [Related]
6. Changes in physicochemical and structural properties of pea protein during the high moisture extrusion process: Effects of carboxymethylcellulose sodium and different extrusion zones. Yu X; Wang H; Yuan Y; Shi J; Duan Y; Wang L; Wang P; Xiao Z Int J Biol Macromol; 2023 Nov; 251():126350. PubMed ID: 37591439 [TBL] [Abstract][Full Text] [Related]
7. The impact of newly produced protein and dietary fiber rich fractions of yellow pea (Pisum sativum L.) on the structure and mechanical properties of pasta-like sheets. Muneer F; Johansson E; Hedenqvist MS; Plivelic TS; Markedal KE; Petersen IL; Sørensen JC; Kuktaite R Food Res Int; 2018 Apr; 106():607-618. PubMed ID: 29579966 [TBL] [Abstract][Full Text] [Related]
8. Improving functional properties of pea protein isolate for microencapsulation of flaxseed oil. Bajaj PR; Bhunia K; Kleiner L; Joyner Melito HS; Smith D; Ganjyal G; Sablani SS J Microencapsul; 2017 Mar; 34(2):218-230. PubMed ID: 28393603 [TBL] [Abstract][Full Text] [Related]
9. Evaluation of the release profile, stability and antioxidant activity of a proanthocyanidin-rich cinnamon (Cinnamomum zeylanicum) extract co-encapsulated with α-tocopherol by spray chilling. Tulini FL; Souza VB; Thomazini M; Silva MP; Massarioli AP; Alencar SM; Pallone EM; Genovese MI; Favaro-Trindade CS Food Res Int; 2017 May; 95():117-124. PubMed ID: 28395819 [TBL] [Abstract][Full Text] [Related]
10. Preparation and characterization of glycerol plasticized-pea starch/ZnO-carboxymethylcellulose sodium nanocomposites. Yu J; Yang J; Liu B; Ma X Bioresour Technol; 2009 Jun; 100(11):2832-41. PubMed ID: 19217775 [TBL] [Abstract][Full Text] [Related]
11. Characterization of pea vicilin. 1. Denoting convicilin as the alpha-subunit of the Pisum vicilin family. O'Kane FE; Happe RP; Vereijken JM; Gruppen H; van Boekel MA J Agric Food Chem; 2004 May; 52(10):3141-8. PubMed ID: 15137866 [TBL] [Abstract][Full Text] [Related]
12. Thermal denaturation of pea globulins (Pisum sativum L.)-molecular interactions leading to heat-induced protein aggregation. Mession JL; Sok N; Assifaoui A; Saurel R J Agric Food Chem; 2013 Feb; 61(6):1196-204. PubMed ID: 23298167 [TBL] [Abstract][Full Text] [Related]
13. Characterization of two novel defense peptides from pea (Pisum sativum) seeds. Almeida MS; Cabral KM; Zingali RB; Kurtenbach E Arch Biochem Biophys; 2000 Jun; 378(2):278-86. PubMed ID: 10860545 [TBL] [Abstract][Full Text] [Related]
14. Pea protein provides a promising matrix for microencapsulating iron. Bittencourt LL; Pedrosa C; Sousa VP; Pierucci AP; Citelli M Plant Foods Hum Nutr; 2013 Dec; 68(4):333-9. PubMed ID: 23990387 [TBL] [Abstract][Full Text] [Related]
15. Characterisation of surface modified salbutamol sulphate-alkylpolyglycoside microparticles prepared by spray drying. Columbano A; Buckton G; Wikeley P Int J Pharm; 2003 Mar; 253(1-2):61-70. PubMed ID: 12593937 [TBL] [Abstract][Full Text] [Related]
16. Colloidal and interfacial properties of spray dried pulse protein-blueberry polyphenol particles in model dispersion systems. Lin Y; Cheng N; Jiang Y; Grace MH; Lila MA; Hoskin RT; Zheng H Food Chem; 2024 Nov; 457():140073. PubMed ID: 38909456 [TBL] [Abstract][Full Text] [Related]
18. In vitro digestibility, protein composition and techno-functional properties of Saskatchewan grown yellow field peas (Pisum sativum L.) as affected by processing. Ma Z; Boye JI; Hu X Food Res Int; 2017 Feb; 92():64-78. PubMed ID: 28290299 [TBL] [Abstract][Full Text] [Related]
19. Effects of grinding and thermal treatments on hydrolysis susceptibility of pea proteins (Pisum sativum L.). Le Gall M; Guéguen J; Séve B; Quillien L J Agric Food Chem; 2005 Apr; 53(8):3057-64. PubMed ID: 15826059 [TBL] [Abstract][Full Text] [Related]
20. Drying method determines the structure and the solubility of microfluidized pea globulin aggregates. Oliete B; Yassine SA; Cases E; Saurel R Food Res Int; 2019 May; 119():444-454. PubMed ID: 30884676 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]