BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 17454671)

  • 1. Computational network model prediction of hemodynamic alterations due to arteriolar remodeling in interval sprint trained skeletal muscle.
    Binder KW; Murfee WL; Song J; Laughlin MH; Price RJ
    Microcirculation; 2007; 14(3):181-92. PubMed ID: 17454671
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interval sprint training enhances endothelial function and eNOS content in some arteries that perfuse white gastrocnemius muscle.
    Laughlin MH; Woodman CR; Schrage WG; Gute D; Price EM
    J Appl Physiol (1985); 2004 Jan; 96(1):233-44. PubMed ID: 12923113
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Exercise training produces nonuniform increases in arteriolar density of rat soleus and gastrocnemius muscle.
    Laughlin MH; Cook JD; Tremble R; Ingram D; Colleran PN; Turk JR
    Microcirculation; 2006; 13(3):175-86. PubMed ID: 16627360
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Regional changes in capillary supply in skeletal muscle of interval-sprint and low-intensity, endurance-trained rats.
    Gute D; Laughlin MH; Amann JF
    Microcirculation; 1994 Oct; 1(3):183-93. PubMed ID: 8790589
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nonuniform effects of endurance exercise training on vasodilation in rat skeletal muscle.
    McAllister RM; Jasperse JL; Laughlin MH
    J Appl Physiol (1985); 2005 Feb; 98(2):753-61. PubMed ID: 15448126
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Vascular cell transcriptomic changes to exercise training differ directionally along and between skeletal muscle arteriolar trees.
    Laughlin MH; Yang HT; Tharp DL; Rector RS; Padilla J; Bowles DK
    Microcirculation; 2017 Feb; 24(2):. PubMed ID: 27889934
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Exercise-induced differential changes in gene expression among arterioles of skeletal muscles of obese rats.
    Laughlin MH; Padilla J; Jenkins NT; Thorne PK; Martin JS; Rector RS; Akter S; Davis JW
    J Appl Physiol (1985); 2015 Sep; 119(6):583-603. PubMed ID: 26183477
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effects of high-intensity exercise on skeletal muscle neutrophil myeloperoxidase in untrained and trained rats.
    Morozov VI; Tsyplenkov PV; Golberg ND; Kalinski MI
    Eur J Appl Physiol; 2006 Aug; 97(6):716-22. PubMed ID: 16791601
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanisms for exercise training-induced increases in skeletal muscle blood flow capacity: differences with interval sprint training versus aerobic endurance training.
    Laughlin MH; Roseguini B
    J Physiol Pharmacol; 2008 Dec; 59 Suppl 7(Suppl 7):71-88. PubMed ID: 19258658
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regional changes in capillary supply in skeletal muscle of high-intensity endurance-trained rats.
    Gute D; Fraga C; Laughlin MH; Amann JF
    J Appl Physiol (1985); 1996 Aug; 81(2):619-26. PubMed ID: 8872626
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Downhill treadmill running trains the rat spinotrapezius muscle.
    Hahn SA; Ferreira LF; Williams JB; Jansson KP; Behnke BJ; Musch TI; Poole DC
    J Appl Physiol (1985); 2007 Jan; 102(1):412-6. PubMed ID: 16931561
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Computational Network Model Prediction of Hemodynamic Alterations Due to Arteriolar Rarefaction and Estimation of Skeletal Muscle Perfusion in Peripheral Arterial Disease.
    Heuslein JL; Li X; Murrell KP; Annex BH; Peirce SM; Price RJ
    Microcirculation; 2015 Jul; 22(5):360-9. PubMed ID: 25866235
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Is gender crucial for cardiovascular adjustments induced by exercise training in female spontaneously hypertensive rats?
    Coimbra R; Sanchez LS; Potenza JM; Rossoni LV; Amaral SL; Michelini LC
    Hypertension; 2008 Sep; 52(3):514-21. PubMed ID: 18695147
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of aging and exercise training on skeletal muscle blood flow and resistance artery morphology.
    Behnke BJ; Ramsey MW; Stabley JN; Dominguez JM; Davis RT; McCullough DJ; Muller-Delp JM; Delp MD
    J Appl Physiol (1985); 2012 Dec; 113(11):1699-708. PubMed ID: 23042906
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of endurance exercise training on distribution of vascular adaptations in rat skeletal muscle.
    Sexton WL; Laughlin MH
    Am J Physiol; 1994 Feb; 266(2 Pt 2):H483-90. PubMed ID: 8141348
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Increased wheel-running activity in the genetically skeletal muscle fast-twitch fiber-dominant rats.
    Suwa M; Nakano H; Higaki Y; Nakamura T; Katsuta S; Kumagai S
    J Appl Physiol (1985); 2003 Jan; 94(1):185-92. PubMed ID: 12391088
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Functional adaptations in the skeletal muscle microvasculature to endurance and interval sprint training in the type 2 diabetic OLETF rat.
    Martin JS; Padilla J; Jenkins NT; Crissey JM; Bender SB; Rector RS; Thyfault JP; Laughlin MH
    J Appl Physiol (1985); 2012 Oct; 113(8):1223-32. PubMed ID: 22923508
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nonuniform changes in arteriolar myogenic tone within skeletal muscle following hindlimb unweighting.
    Heaps CL; Bowles DK
    J Appl Physiol (1985); 2002 Mar; 92(3):1145-51. PubMed ID: 11842052
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Functional adaptations of rat skeletal muscle arterioles to aerobic exercise training.
    Lash JM; Bohlen HG
    J Appl Physiol (1985); 1992 Jun; 72(6):2052-62. PubMed ID: 1629056
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Control of microvascular oxygen pressures during recovery in rat fast-twitch muscle of differing oxidative capacity.
    McDonough P; Behnke BJ; Padilla DJ; Musch TI; Poole DC
    Exp Physiol; 2007 Jul; 92(4):731-8. PubMed ID: 17449542
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.