BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 17454972)

  • 1. Estimation of phylogeny and invariant sites under the general Markov model of nucleotide sequence evolution.
    Jayaswal V; Robinson J; Jermiin L
    Syst Biol; 2007 Apr; 56(2):155-62. PubMed ID: 17454972
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Two stationary nonhomogeneous Markov models of nucleotide sequence evolution.
    Jayaswal V; Jermiin LS; Poladian L; Robinson J
    Syst Biol; 2011 Jan; 60(1):74-86. PubMed ID: 21081482
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Estimation of phylogeny using a general Markov model.
    Jayaswal V; Jermiin LS; Robinson J
    Evol Bioinform Online; 2007 Feb; 1():62-80. PubMed ID: 19325854
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genetic distance for a general non-stationary markov substitution process.
    Kaehler BD; Yap VB; Zhang R; Huttley GA
    Syst Biol; 2015 Mar; 64(2):281-93. PubMed ID: 25503772
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of models for nucleotide substitution used in maximum-likelihood phylogenetic estimation.
    Yang Z; Goldman N; Friday A
    Mol Biol Evol; 1994 Mar; 11(2):316-24. PubMed ID: 8170371
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Unraveling the evolutionary radiation of the thoracican barnacles using molecular and morphological evidence: a comparison of several divergence time estimation approaches.
    Pérez-Losada M; Høeg JT; Crandall KA
    Syst Biol; 2004 Apr; 53(2):244-64. PubMed ID: 15205051
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bayesian coestimation of phylogeny and sequence alignment.
    Lunter G; Miklós I; Drummond A; Jensen JL; Hein J
    BMC Bioinformatics; 2005 Apr; 6():83. PubMed ID: 15804354
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Were the original eubacteria thermophiles?
    Achenbach-Richter L; Gupta R; Stetter KO; Woese CR
    Syst Appl Microbiol; 1987; 9():34-9. PubMed ID: 11542087
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantifying the stationarity and time reversibility of the nucleotide substitution process.
    Squartini F; Arndt PF
    Mol Biol Evol; 2008 Dec; 25(12):2525-35. PubMed ID: 18682605
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Exploring among-site rate variation models in a maximum likelihood framework using empirical data: effects of model assumptions on estimates of topology, branch lengths, and bootstrap support.
    Buckley TR; Simon C; Chambers GK
    Syst Biol; 2001 Feb; 50(1):67-86. PubMed ID: 12116595
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Detecting the coevolution of biosequences--an example of RNA interaction prediction.
    Yeang CH; Darot JF; Noller HF; Haussler D
    Mol Biol Evol; 2007 Sep; 24(9):2119-31. PubMed ID: 17636042
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Using evolutionary Expectation Maximization to estimate indel rates.
    Holmes I
    Bioinformatics; 2005 May; 21(10):2294-300. PubMed ID: 15731213
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Using a GTR+Γ substitution model for dating sequence divergence when stationarity and time-reversibility assumptions are violated.
    Barba-Montoya J; Tao Q; Kumar S
    Bioinformatics; 2020 Dec; 36(Suppl_2):i884-i894. PubMed ID: 33381826
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Deinococcus-Thermus phylum and the effect of rRNA composition on phylogenetic tree construction.
    Weisburg WG; Giovannoni SJ; Woese CR
    Syst Appl Microbiol; 1989; 11():128-34. PubMed ID: 11542160
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Maximum-likelihood phylogenetic analysis under a covarion-like model.
    Galtier N
    Mol Biol Evol; 2001 May; 18(5):866-73. PubMed ID: 11319270
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phylogenetic depth of the bacterial genera Aquifex and Thermotoga inferred from analysis of ribosomal protein, elongation factor, and RNA polymerase subunit sequences.
    Bocchetta M; Gribaldo S; Sanangelantoni A; Cammarano P
    J Mol Evol; 2000 Apr; 50(4):366-80. PubMed ID: 10795828
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of signature proteins that are distinctive of the Deinococcus-Thermus phylum.
    Griffiths E; Gupta RS
    Int Microbiol; 2007 Sep; 10(3):201-8. PubMed ID: 18076002
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Estimating the pattern of nucleotide substitution.
    Yang Z
    J Mol Evol; 1994 Jul; 39(1):105-11. PubMed ID: 8064867
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparative genomics of Thermus thermophilus and Deinococcus radiodurans: divergent routes of adaptation to thermophily and radiation resistance.
    Omelchenko MV; Wolf YI; Gaidamakova EK; Matrosova VY; Vasilenko A; Zhai M; Daly MJ; Koonin EV; Makarova KS
    BMC Evol Biol; 2005 Oct; 5():57. PubMed ID: 16242020
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reconstruction of ancestral nucleotide sequences and estimation of substitution frequencies in a star phylogeny.
    Arndt PF
    Gene; 2007 Apr; 390(1-2):75-83. PubMed ID: 17223282
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.