BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

228 related articles for article (PubMed ID: 17455297)

  • 1. Bioenergetics of mitochondria in cultured neurons and their role in glutamate excitotoxicity.
    Nicholls DG; Johnson-Cadwell L; Vesce S; Jekabsons M; Yadava N
    J Neurosci Res; 2007 Nov; 85(15):3206-12. PubMed ID: 17455297
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Oxidative stress and energy crises in neuronal dysfunction.
    Nicholls DG
    Ann N Y Acad Sci; 2008 Dec; 1147():53-60. PubMed ID: 19076430
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Secretory PLA2-IIA and ROS generation in peripheral mitochondria are critical for neuronal death.
    Mathisen GH; Thorkildsen IH; Paulsen RE
    Brain Res; 2007 Jun; 1153():43-51. PubMed ID: 17462609
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simultaneous age-related depolarization of mitochondrial membrane potential and increased mitochondrial reactive oxygen species production correlate with age-related glutamate excitotoxicity in rat hippocampal neurons.
    Parihar MS; Brewer GJ
    J Neurosci Res; 2007 Apr; 85(5):1018-32. PubMed ID: 17335078
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spare respiratory capacity, oxidative stress and excitotoxicity.
    Nicholls DG
    Biochem Soc Trans; 2009 Dec; 37(Pt 6):1385-8. PubMed ID: 19909281
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mild mitochondrial inhibition in vivo enhances glutamate-induced neuronal damage through calpain but not caspase activation: role of ionotropic glutamate receptors.
    Del Río P; Massieu L
    Exp Neurol; 2008 Jul; 212(1):179-88. PubMed ID: 18495118
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Calcium-dependent production of reactive oxygen species is involved in neuronal damage induced during glycolysis inhibition in cultured hippocampal neurons.
    Hernández-Fonseca K; Cárdenas-Rodríguez N; Pedraza-Chaverri J; Massieu L
    J Neurosci Res; 2008 Jun; 86(8):1768-80. PubMed ID: 18293416
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 'Mild Uncoupling' does not decrease mitochondrial superoxide levels in cultured cerebellar granule neurons but decreases spare respiratory capacity and increases toxicity to glutamate and oxidative stress.
    Johnson-Cadwell LI; Jekabsons MB; Wang A; Polster BM; Nicholls DG
    J Neurochem; 2007 Jun; 101(6):1619-31. PubMed ID: 17437552
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Relationships between superoxide levels and delayed calcium deregulation in cultured cerebellar granule cells exposed continuously to glutamate.
    Vesce S; Kirk L; Nicholls DG
    J Neurochem; 2004 Aug; 90(3):683-93. PubMed ID: 15255947
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Involvement of calcineurin in glutamate-induced mitochondrial dynamics in neurons.
    Han XJ; Lu YF; Li SA; Tomizawa K; Takei K; Matsushita M; Matsui H
    Neurosci Res; 2008 Jan; 60(1):114-9. PubMed ID: 18045716
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mitochondrial proteomic analysis and characterization of the intracellular mechanisms of bis(7)-tacrine in protecting against glutamate-induced excitotoxicity in primary cultured neurons.
    Fu H; Li W; Liu Y; Lao Y; Liu W; Chen C; Yu H; Lee NT; Chang DC; Li P; Pang Y; Tsim KW; Li M; Han Y
    J Proteome Res; 2007 Jul; 6(7):2435-46. PubMed ID: 17530875
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Excitotoxicity and mitochondria.
    Nicholls DG; Budd SL; Ward MW; Castilho RF
    Biochem Soc Symp; 1999; 66():55-67. PubMed ID: 10989657
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Resistance to kynurenic acid of the NMDA receptor-dependent toxicity of 3-nitropropionic acid and cyanide in cerebellar granule neurons.
    Fatokun AA; Smith RA; Stone TW
    Brain Res; 2008 Jun; 1215():200-7. PubMed ID: 18486115
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In situ respiration and bioenergetic status of mitochondria in primary cerebellar granule neuronal cultures exposed continuously to glutamate.
    Jekabsons MB; Nicholls DG
    J Biol Chem; 2004 Jul; 279(31):32989-3000. PubMed ID: 15166243
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Glutamate excitotoxicity and neuronal energy metabolism.
    Nicholls DG; Budd SL; Castilho RF; Ward MW
    Ann N Y Acad Sci; 1999; 893():1-12. PubMed ID: 10672225
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Impaired mitochondrial energy metabolism and neuronal apoptotic cell death after chronic dichlorvos (OP) exposure in rat brain.
    Kaur P; Radotra B; Minz RW; Gill KD
    Neurotoxicology; 2007 Nov; 28(6):1208-19. PubMed ID: 17850875
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mitochondria, metabolic disturbances, oxidative stress and the kynurenine system, with focus on neurodegenerative disorders.
    Sas K; Robotka H; Toldi J; Vécsei L
    J Neurol Sci; 2007 Jun; 257(1-2):221-39. PubMed ID: 17462670
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Calcium, mitochondria and oxidative stress in neuronal pathology. Novel aspects of an enduring theme.
    Chinopoulos C; Adam-Vizi V
    FEBS J; 2006 Feb; 273(3):433-50. PubMed ID: 16420469
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Neuroprotective effects of R,R-tetrahydrochrysene against glutamate-induced cell death through anti-excitotoxic and antioxidant actions involving estrogen receptor-dependent and -independent pathways.
    Xia Y; Xing JZ; Krukoff TL
    Neuroscience; 2009 Aug; 162(2):292-306. PubMed ID: 19410635
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Glutamate-induced deregulation of calcium homeostasis and mitochondrial dysfunction in mammalian central neurones.
    Khodorov B
    Prog Biophys Mol Biol; 2004 Oct; 86(2):279-351. PubMed ID: 15288761
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.