These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 17455333)

  • 1. Role of dCA3 efferents via the fimbria in the acquisition of a delay nonmatch to place task.
    Hunsaker MR; Allan KD; Kesner RP
    Hippocampus; 2007; 17(6):494-502. PubMed ID: 17455333
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A double dissociation of subcortical hippocampal efferents for encoding and consolidation/retrieval of spatial information.
    Hunsaker MR; Tran GT; Kesner RP
    Hippocampus; 2008; 18(7):699-709. PubMed ID: 18493950
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A behavioral analysis of the role of CA3 and CA1 subcortical efferents during classical fear conditioning.
    Hunsaker MR; Tran GT; Kesner RP
    Behav Neurosci; 2009 Jun; 123(3):624-30. PubMed ID: 19485569
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Unreinforced spatial (latent) learning is mediated by a circuit that includes dorsal entorhinal cortex and fimbria fornix.
    Gaskin S; White NM
    Hippocampus; 2007; 17(7):586-94. PubMed ID: 17455197
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Place learning and object recognition by rats subjected to transection of the fimbria-fornix and/or ablation of the prefrontal cortex.
    Mogensen J; Lauritsen KT; Elvertorp S; Hasman A; Moustgaard A; Wörtwein G
    Brain Res Bull; 2004 Apr; 63(3):217-36. PubMed ID: 15145141
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Place and response learning of rats in a Morris water maze: differential effects of fimbria fornix and medial prefrontal cortex lesions.
    de Bruin JP; Moita MP; de Brabander HM; Joosten RN
    Neurobiol Learn Mem; 2001 Mar; 75(2):164-78. PubMed ID: 11222058
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Selective cholinergic depletion of the hippocampus spares both behaviorally induced Arc transcription and spatial learning and memory.
    Fletcher BR; Baxter MG; Guzowski JF; Shapiro ML; Rapp PR
    Hippocampus; 2007; 17(3):227-34. PubMed ID: 17286278
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Functional cooperation between the hippocampal subregions and the medial septum in unreinforced and reinforced spatial memory tasks.
    Okada K; Okaichi H
    Behav Brain Res; 2010 Jun; 209(2):295-304. PubMed ID: 20144657
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Egocentric spatial orientation in a water maze by rats subjected to transection of the fimbria-fornix and/or ablation of the prefrontal cortex.
    Mogensen J; Moustgaard A; Khan U; Wörtwein G; Nielsen KS
    Brain Res Bull; 2005 Feb; 65(1):41-58. PubMed ID: 15680544
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thalamic and hippocampal mechanisms in spatial navigation: a dissociation between brain mechanisms for learning how versus learning where to navigate.
    Cain DP; Boon F; Corcoran ME
    Behav Brain Res; 2006 Jun; 170(2):241-56. PubMed ID: 16569442
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of fimbria-fornix, hippocampus, and amygdala lesions on discrimination between proximal locations.
    Chai SC; White NM
    Behav Neurosci; 2004 Aug; 118(4):770-84. PubMed ID: 15301603
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Involuntary, unreinforced (pure) spatial learning is impaired by fimbria-fornix but not by dorsal hippocampus lesions.
    White NM; Holahan MR; Goffaux P
    Hippocampus; 2003; 13(3):324-33. PubMed ID: 12722973
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prefrontal cortex and hippocampus in posttraumatic functional recovery: spatial delayed alternation by rats subjected to transection of the fimbria-fornix and/or ablation of the prefrontal cortex.
    Mogensen J; Hjortkjaer J; Ibervang KL; Stedal K; Malá H
    Brain Res Bull; 2007 Jun; 73(1-3):86-95. PubMed ID: 17499641
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Differential roles of dorsal hippocampal subregions in spatial working memory with short versus intermediate delay.
    Lee I; Kesner RP
    Behav Neurosci; 2003 Oct; 117(5):1044-53. PubMed ID: 14570553
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A double dissociation of dorsal and ventral hippocampal function on a learning and memory task mediated by the dorso-lateral striatum.
    McDonald RJ; Jones J; Richards B; Hong NS
    Eur J Neurosci; 2006 Sep; 24(6):1789-801. PubMed ID: 17004942
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Behavior strategy learning in rat: effects of lesions of the dorsal striatum or dorsal hippocampus.
    Compton DM
    Behav Processes; 2004 Nov; 67(3):335-42. PubMed ID: 15518984
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The role of CA3 and CA1 in the acquisition of an object-trace-place paired-associate task.
    Hunsaker MR; Thorup JA; Welch T; Kesner RP
    Behav Neurosci; 2006 Dec; 120(6):1252-6. PubMed ID: 17201469
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Impaired performance of fornix-transected rats on a distal, but not on a proximal, version of the radial-arm maze cue task.
    Hudon C; Doré FY; Goulet S
    Behav Neurosci; 2003 Dec; 117(6):1353-62. PubMed ID: 14674853
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dorsal hippocampal function in unreinforced spatial learning.
    White NM; Wallet PA
    Hippocampus; 2000; 10(3):226-35. PubMed ID: 10902892
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The interactions and dissociations of the dorsal hippocampus subregions: how the dentate gyrus, CA3, and CA1 process spatial information.
    Goodrich-Hunsaker NJ; Hunsaker MR; Kesner RP
    Behav Neurosci; 2008 Feb; 122(1):16-26. PubMed ID: 18298245
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.