These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

306 related articles for article (PubMed ID: 17455918)

  • 1. Analysis of HO2 and OH formation mechanisms using FM and UV spectroscopy in dimethyl ether oxidation.
    Suzaki K; Tsuchiya K; Koshi M; Tezaki A
    J Phys Chem A; 2007 May; 111(19):3776-88. PubMed ID: 17455918
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analysis of the kinetics and yields of OH radical production from the CH3OCH2 + O2 reaction in the temperature range 195-650 K: an experimental and computational study.
    Eskola AJ; Carr SA; Shannon RJ; Wang B; Blitz MA; Pilling MJ; Seakins PW; Robertson SH
    J Phys Chem A; 2014 Aug; 118(34):6773-88. PubMed ID: 25069059
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A kinetic and product study of the Cl + HO2 reaction.
    Hickson KM; Keyser LF
    J Phys Chem A; 2005 Aug; 109(31):6887-900. PubMed ID: 16834046
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanism of the OH-initiated oxidation of hydroxyacetone over the temperature range 236-298 K.
    Butkovskaya NI; Pouvesle N; Kukui A; Mu Y; Le Bras G
    J Phys Chem A; 2006 Jun; 110(21):6833-43. PubMed ID: 16722699
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Investigation of the radical product channel of the CH3COO2 + HO2 reaction in the gas phase.
    Jenkin ME; Hurley MD; Wallington TJ
    Phys Chem Chem Phys; 2007 Jun; 9(24):3149-62. PubMed ID: 17612738
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reflected shock tube studies of high-temperature rate constants for OH + NO2 --> HO2 + NO and OH + HO2 --> H2O + O2.
    Srinivasan NK; Su MC; Sutherland JW; Michael JV; Ruscic B
    J Phys Chem A; 2006 Jun; 110(21):6602-7. PubMed ID: 16722671
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mutual sensitization of the oxidation of nitric oxide and a natural gas blend in a JSR at elevated pressure: experimental and detailed kinetic modeling study.
    Dagaut P; Dayma G
    J Phys Chem A; 2006 Jun; 110(21):6608-16. PubMed ID: 16722672
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Experimental and ab initio study of the HO2.CH3OH complex: thermodynamics and kinetics of formation.
    Christensen LE; Okumura M; Hansen JC; Sander SP; Francisco JS
    J Phys Chem A; 2006 Jun; 110(21):6948-59. PubMed ID: 16722709
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Measurements and modeling of DO2 formation in the reactions of C2D5 and C3D7 radicals with O2.
    Estupiñán EG; Smith JD; Tezaki A; Klippenstein SJ; Taatjes CA
    J Phys Chem A; 2007 May; 111(19):4015-30. PubMed ID: 17388267
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Direct measurement of ˙OH and HO
    Chen MW; Rotavera B; Chao W; Zádor J; Taatjes CA
    Phys Chem Chem Phys; 2018 Apr; 20(16):10815-10825. PubMed ID: 29417107
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-temperature shock tube measurements of dimethyl ether decomposition and the reaction of dimethyl ether with OH.
    Cook RD; Davidson DF; Hanson RK
    J Phys Chem A; 2009 Sep; 113(37):9974-80. PubMed ID: 19694474
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Infrared frequency-modulation probing of product formation in alkyl + O2 reactions. Part IV. Reactions of propyl and butyl radicals with O2.
    DeSain JD; Taatjes CA; Miller JA; Klippenstein SJ; Hahn DK
    Faraday Discuss; 2001; (119):101-20; discussion 121-43. PubMed ID: 11877987
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Kinetics and rate constants of the reaction CH2OH+O2-->CH2O+HO2 in the temperature range of 236-600 K.
    Schocker A; Uetake M; Kanno N; Koshi M; Tonokura K
    J Phys Chem A; 2007 Jul; 111(29):6622-7. PubMed ID: 17388354
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Kinetics of alpha-hydroxy-alkylperoxyl radicals in oxidation processes. HO2*-initiated oxidation of ketones/aldehydes near the tropopause.
    Hermans I; Müller JF; Nguyen TL; Jacobs PA; Peeters J
    J Phys Chem A; 2005 May; 109(19):4303-11. PubMed ID: 16833760
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Temperature Dependence Study of the Kinetics and Product Yields of the HO
    Hui AO; Fradet M; Okumura M; Sander SP
    J Phys Chem A; 2019 May; 123(17):3655-3671. PubMed ID: 30942073
    [TBL] [Abstract][Full Text] [Related]  

  • 16. HO2 formation from the OH + benzene reaction in the presence of O2.
    Nehr S; Bohn B; Fuchs H; Hofzumahaus A; Wahner A
    Phys Chem Chem Phys; 2011 Jun; 13(22):10699-708. PubMed ID: 21544290
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Water dependence of the HO2 self reaction: kinetics of the HO2-H2O complex.
    Kanno N; Tonokura K; Tezaki A; Koshi M
    J Phys Chem A; 2005 Apr; 109(14):3153-8. PubMed ID: 16833643
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dimethyl ether oxidation at elevated temperatures (295-600 K).
    Rosado-Reyes CM; Francisco JS; Szente JJ; Maricq MM; Frøsig Østergaard L
    J Phys Chem A; 2005 Dec; 109(48):10940-53. PubMed ID: 16331938
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Wide temperature range (T = 295 K and 770-1305 K) study of the kinetics of the reactions HCO + NO and HCO + NO2 using frequency modulation spectroscopy.
    Dammeier J; Colberg M; Friedrichs G
    Phys Chem Chem Phys; 2007 Aug; 9(31):4177-88. PubMed ID: 17687467
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Glyoxal Oxidation Mechanism: Implications for the Reactions HCO + O2 and OCHCHO + HO2.
    Faßheber N; Friedrichs G; Marshall P; Glarborg P
    J Phys Chem A; 2015 Jul; 119(28):7305-15. PubMed ID: 25611968
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.