BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 17456012)

  • 1. Fast molecular shape matching using contact maps.
    Agarwal PK; Mustafa NH; Wang Y
    J Comput Biol; 2007 Mar; 14(2):131-43. PubMed ID: 17456012
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fast overlapping of protein contact maps by alignment of eigenvectors.
    Di Lena P; Fariselli P; Margara L; Vassura M; Casadio R
    Bioinformatics; 2010 Sep; 26(18):2250-8. PubMed ID: 20610612
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Searching protein 3-D structures in linear time.
    Shibuya T
    J Comput Biol; 2010 Mar; 17(3):203-19. PubMed ID: 20377441
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Divide and Conquer Approach to Contact Map Overlap Problem Using 2D-Pattern Mining of Protein Contact Networks.
    Koneru SV; Bhavani DS
    IEEE/ACM Trans Comput Biol Bioinform; 2015; 12(4):729-37. PubMed ID: 26357311
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A (1.5 + epsilon)-approximation algorithm for unsigned translocation distance.
    Cui Y; Wang L; Zhu D; Liu X
    IEEE/ACM Trans Comput Biol Bioinform; 2008; 5(1):56-66. PubMed ID: 18245875
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Searching protein three-dimensional structures in faster than linear time.
    Shibuya T
    J Comput Biol; 2010 Apr; 17(4):593-602. PubMed ID: 20426692
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparing protein contact maps via Universal Similarity Metric: an improvement in the noise-tolerance.
    Rahmati S; Glasgow JI
    Int J Comput Biol Drug Des; 2009; 2(2):149-67. PubMed ID: 20090168
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A similarity matrix-based hybrid algorithm for the contact map overlaps problem.
    Lu H; Yang G; Yeung LF
    Comput Biol Med; 2011 May; 41(5):247-52. PubMed ID: 21439563
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improved approximation algorithms for reconstructing the history of tandem repeats.
    Chen ZZ; Wang L
    IEEE/ACM Trans Comput Biol Bioinform; 2009; 6(3):438-53. PubMed ID: 19644172
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reconstruction of ancestral genomic sequences using likelihood.
    Elias I; Tuller T
    J Comput Biol; 2007 Mar; 14(2):216-37. PubMed ID: 17456016
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A polynomial-time algorithm for the matching of crossing contact-map patterns.
    Gramm J
    IEEE/ACM Trans Comput Biol Bioinform; 2004; 1(4):171-80. PubMed ID: 17051699
    [TBL] [Abstract][Full Text] [Related]  

  • 12. On complexity of protein structure alignment problem under distance constraint.
    Poleksic A
    IEEE/ACM Trans Comput Biol Bioinform; 2012; 9(2):511-6. PubMed ID: 22025757
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The 1.375 approximation algorithm for sorting by transpositions can run in O(n log n) time.
    Firoz JS; Hasan M; Khan AZ; Rahman MS
    J Comput Biol; 2011 Aug; 18(8):1007-11. PubMed ID: 21702689
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A parameterized algorithm for protein structure alignment.
    Xu J; Jiao F; Berger B
    J Comput Biol; 2007 Jun; 14(5):564-77. PubMed ID: 17683261
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Protein local structure alignment under the discrete Fréchet distance.
    Zhu B
    J Comput Biol; 2007 Dec; 14(10):1343-51. PubMed ID: 18052775
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Efficient substructure RMSD query algorithms.
    Shibuya T
    J Comput Biol; 2007 Nov; 14(9):1201-7. PubMed ID: 17990976
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fast algorithms for transforming back and forth between a signed permutation and its equivalent simple permutation.
    Gog S; Bader M
    J Comput Biol; 2008 Oct; 15(8):1029-41. PubMed ID: 18781831
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Approximation properties of haplotype tagging.
    Vinterbo SA; Dreiseitl S; Ohno-Machado L
    BMC Bioinformatics; 2006 Jan; 7():8. PubMed ID: 16401341
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Algorithmic computation of knot polynomials of secondary structure elements of proteins.
    Emmert-Streib F
    J Comput Biol; 2006 Oct; 13(8):1503-12. PubMed ID: 17061925
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Predicting RNA secondary structures with arbitrary pseudoknots by maximizing the number of stacking pairs.
    Ieong S; Kao MY; Lam TW; Sung WK; Yiu SM
    J Comput Biol; 2003; 10(6):981-95. PubMed ID: 14980021
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.