These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 17456085)

  • 1. Performance testing of commercial containers for collection and storage of fire debris evidence.
    Williams MR; Sigman M
    J Forensic Sci; 2007 May; 52(3):579-85. PubMed ID: 17456085
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamic vapor microextraction of ignitable liquid from casework containers.
    Berry JL; Gregg ME; Friss AJ; Koepke AA; Suiter CL; Newman R; Harries ME; Jeerage KM
    Forensic Sci Int; 2022 Jul; 336():111315. PubMed ID: 35504094
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Performance testing of the new AMPAC fire debris bag against three other commercial fire debris bags.
    Grutters MM; Dogger J; Hendrikse JN
    J Forensic Sci; 2012 Sep; 57(5):1290-8. PubMed ID: 22564080
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Exposure of a liquefied gas container to an external fire.
    Raj PK
    J Hazard Mater; 2005 Jun; 122(1-2):37-49. PubMed ID: 15908108
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Study of acidified ignitable liquid residues in fire debris by solid-phase microextraction with gas chromatography and mass spectrometry.
    Martín-Alberca C; García-Ruiz C; Delémont O
    J Sep Sci; 2015 Sep; 38(18):3218-3227. PubMed ID: 26179121
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Adsorption saturation and chromatographic distortion effects on passive headspace sampling with activated charcoal in fire debris analysis.
    Williams MR; Fernandes D; Bridge C; Dorrien D; Elliott S; Sigman M
    J Forensic Sci; 2005 Mar; 50(2):316-25. PubMed ID: 15813542
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Forensic application of gas chromatography-differential mobility spectrometry with two-way classification of ignitable liquids from fire debris.
    Lu Y; Harrington PB
    Anal Chem; 2007 Sep; 79(17):6752-9. PubMed ID: 17683164
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The sampling of ignitable liquids on suspects' hands.
    Montani I; Comment S; Delémont O
    Forensic Sci Int; 2010 Jan; 194(1-3):115-24. PubMed ID: 19954905
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of Cross-contamination of Nylon Bags with Heavy-loaded Gasoline Fire Debris and with Automotive Paint Thinner.
    Belchior F; Andrews SP
    J Forensic Sci; 2016 Nov; 61(6):1622-1631. PubMed ID: 27807849
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Use of a solid absorbent and an accelerant detection canine for the detection of ignitable liquids burned in a structure fire.
    Nowlan M; Stuart AW; Basara GJ; Sandercock PM
    J Forensic Sci; 2007 May; 52(3):643-8. PubMed ID: 17397503
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fire investigation and ignitable liquid residue analysis--a review: 2001-2007.
    Sandercock PM
    Forensic Sci Int; 2008 Apr; 176(2-3):93-110. PubMed ID: 17949931
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Application of an HS-MS for the detection of ignitable liquids from fire debris.
    Ferreiro-González M; Ayuso J; Álvarez JA; Palma M; Barroso CG
    Talanta; 2015 Sep; 142():150-6. PubMed ID: 26003705
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparative evaluation of collapsible versus semi-rigid intravenous containers.
    Gabay M; von Martius K
    Technol Health Care; 2008; 16(6):429-35. PubMed ID: 19212038
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Progress toward the determination of correct classification rates in fire debris analysis.
    Waddell EE; Song ET; Rinke CN; Williams MR; Sigman ME
    J Forensic Sci; 2013 Jul; 58(4):887-96. PubMed ID: 23551258
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Alternative fuels in fire debris analysis: biodiesel basics.
    Stauffer E; Byron D
    J Forensic Sci; 2007 Mar; 52(2):371-9. PubMed ID: 17316234
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A solid-phase microextraction method for the detection of ignitable liquids in fire debris.
    Yoshida H; Kaneko T; Suzuki S
    J Forensic Sci; 2008 May; 53(3):668-76. PubMed ID: 18471212
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Absorption of ignitable liquids into polyethylene/polyvinylidine dichloride bags.
    Kocisko MJ
    J Forensic Sci; 2001 Mar; 46(2):356-62. PubMed ID: 11305441
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Class-conditional feature modeling for ignitable liquid classification with substantial substrate contribution in fire debris analysis.
    Lopatka M; Sigman ME; Sjerps MJ; Williams MR; Vivó-Truyols G
    Forensic Sci Int; 2015 Jul; 252():177-86. PubMed ID: 26005858
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analysis of volatiles in fire debris by combination of activated charcoal strips (ACS) and automated thermal desorption-gas chromatography-mass spectrometry (ATD/GC-MS).
    Martin Fabritius M; Broillet A; König S; Weinmann W
    Forensic Sci Int; 2018 Aug; 289():232-237. PubMed ID: 29908516
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of gasolines using gas chromatography-mass spectrometry and target ion response.
    Barnes AT; Dolan JA; Kuk RJ; Siegel JA
    J Forensic Sci; 2004 Sep; 49(5):1018-23. PubMed ID: 15461104
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.