These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 17456109)

  • 1. Elemental analysis of human cremains using ICP-OES to classify legitimate and contaminated cremains. J Forensic Sci 2006;51(5):967-73.
    Bush PJ; Bergslien ET; Bush MA
    J Forensic Sci; 2007 May; 52(3):742; author reply 743. PubMed ID: 17456109
    [No Abstract]   [Full Text] [Related]  

  • 2. Elemental analysis of human cremains using ICP-OES to classify legitimate and contaminated cremains.
    Brooks TR; Bodkin TE; Potts GE; Smullen SA
    J Forensic Sci; 2006 Sep; 51(5):967-73. PubMed ID: 17018070
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Elemental Analysis of Variably Contaminated Cremains Using X-ray Fluorescence Spectrometry.
    Gilpin M; Christensen AM
    J Forensic Sci; 2015 Jul; 60(4):974-8. PubMed ID: 25762496
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of cremains using X-ray diffraction spectroscopy and a comparison to trace element analysis.
    Bergslien ET; Bush M; Bush PJ
    Forensic Sci Int; 2008 Mar; 175(2-3):218-26. PubMed ID: 17764861
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The wrong urn: commingling of cremains in mortuary practices.
    Kennedy KA
    J Forensic Sci; 1996 Jul; 41(4):689-92. PubMed ID: 8754582
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The anthropometry of contemporary commercial cremation.
    Warren MW; Maples WR
    J Forensic Sci; 1997 May; 42(3):417-23. PubMed ID: 9144931
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Scanning Electron Microscopy-Energy-Dispersive X-Ray (SEM/EDX): A Rapid Diagnostic Tool to Aid the Identification of Burnt Bone and Contested Cremains.
    Ellingham STD; Thompson TJU; Islam M
    J Forensic Sci; 2018 Mar; 63(2):504-510. PubMed ID: 28605021
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The analysis of cremains: A case study involving the inappropriate disposal of mortuary remains.
    Murray KA; Rose JC
    J Forensic Sci; 1993 Jan; 38(1):98-103. PubMed ID: 8426165
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A study on the discrimination of human skeletons using X-ray fluorescence and chemometric tools in chemical anthropology.
    Gonzalez-Rodriguez J; Fowler G
    Forensic Sci Int; 2013 Sep; 231(1-3):407.e1-6. PubMed ID: 23725985
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Case of Contested Cremains Analyzed Through Metric and Chemical Comparison.
    Bartelink EJ; Sholts SB; Milligan CF; Van Deest TL; Wärmländer SK
    J Forensic Sci; 2015 Jul; 60(4):1068-73. PubMed ID: 25754694
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Forensic analysis of soil and sediment traces by scanning electron microscopy and energy-dispersive X-ray analysis: an experimental investigation.
    Pye K; Croft D
    Forensic Sci Int; 2007 Jan; 165(1):52-63. PubMed ID: 16621381
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The use of SEM/EDS analysis to distinguish dental and osseus tissue from other materials.
    Ubelaker DH; Ward DC; Braz VS; Stewart J
    J Forensic Sci; 2002 Sep; 47(5):940-3. PubMed ID: 12353578
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pattern recognition of inductively coupled plasma atomic emission spectroscopy of human scalp hair for discriminating between healthy and hepatitis C patients.
    Lloyd GR; Ahmad S; Wasim M; Brereton RG
    Anal Chim Acta; 2009 Sep; 649(1):33-42. PubMed ID: 19664460
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Preliminary validation of handheld X-ray fluorescence spectrometry: distinguishing osseous and dental tissue from nonbone material of similar chemical composition.
    Zimmerman HA; Schultz JJ; Sigman ME
    J Forensic Sci; 2015 Mar; 60(2):382-90. PubMed ID: 25620077
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Analysis of elemental composition of bone tissue by the method of laser mass spectrometry to diagnose of human medico-biological characteristics].
    Krymova TG; Kolkutin VV; Beniaev NE
    Sud Med Ekspert; 2007; 50(5):32-7. PubMed ID: 18050689
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Determination of trace amounts of sodium and lithium in zirconium dioxide (ZrO2) using liquid electrode plasma optical emission spectrometry.
    Banno M; Tamiya E; Takamura Y
    Anal Chim Acta; 2009 Feb; 634(2):153-7. PubMed ID: 19185113
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The potential of X-ray diffraction in the analysis of burned remains from forensic contexts.
    Piga G; Thompson TJ; Malgosa A; Enzo S
    J Forensic Sci; 2009 May; 54(3):534-9. PubMed ID: 19368627
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Forensic analysis of bioagents by X-ray and TOF-SIMS hyperspectral imaging.
    Brewer LN; Ohlhausen JA; Kotula PG; Michael JR
    Forensic Sci Int; 2008 Aug; 179(2-3):98-106. PubMed ID: 18571885
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Post-cremation taphonomy and artifact preservation.
    Warren MW; Schultz JJ
    J Forensic Sci; 2002 May; 47(3):656-9. PubMed ID: 12051357
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantitative analysis of sharp-force trauma: an application of scanning electron microscopy in forensic anthropology.
    Bartelink EJ; Wiersema JM; Demaree RS
    J Forensic Sci; 2001 Nov; 46(6):1288-93. PubMed ID: 11714137
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.