These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 17456255)

  • 1. From curdlan powder to the triple helix gel structure: an attenuated total reflection-infrared study of the gelation process.
    Gagnon MA; Lafleur M
    Appl Spectrosc; 2007 Apr; 61(4):374-8. PubMed ID: 17456255
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Distinct gelation mechanism between linear and branched (1--3)- beta-D-glucans as revealed by high resolution solid state 13C NMR.
    Saito H; Yoshioka Y; Yoloi M; Yamada J
    Biopolymers; 1990 Dec; 29(14):1689-98. PubMed ID: 2207281
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of the structure and the transport properties of low-set and high-set curdlan hydrogels.
    Gagnon MA; Lafleur M
    J Colloid Interface Sci; 2011 May; 357(2):419-27. PubMed ID: 21402382
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Atomic force microscopy studies on heat-induced gelation of curdlan.
    Ikeda S; Shishido Y
    J Agric Food Chem; 2005 Feb; 53(3):786-91. PubMed ID: 15686434
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Monitoring the thermal gelation of cellulose ethers in situ using attenuated total reflectance fourier transform infrared spectroscopy.
    Banks SR; Sammon C; Melia CD; Timmins P
    Appl Spectrosc; 2005 Apr; 59(4):452-9. PubMed ID: 15901330
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of curdlan and its carboxymethylated derivative by means of Rheology, DSC, and AFM.
    Jin Y; Zhang H; Yin Y; Nishinari K
    Carbohydr Res; 2006 Jan; 341(1):90-9. PubMed ID: 16310757
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular weight effect on liquid crystalline gel formation of curdlan.
    Nobe M; Kuroda N; Dobashi T; Yamamoto T; Konno A; Nakata M
    Biomacromolecules; 2005; 6(6):3373-9. PubMed ID: 16283768
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Combined experiments and molecular simulations for understanding the thermo-responsive behavior and gelation of methylated glucans with different glycosidic linkages.
    Liao Q; Ren H; Xu J; Wang P; Yuan B; Zhang H
    J Colloid Interface Sci; 2024 Nov; 674():315-325. PubMed ID: 38936088
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Use of FT-IR, FT-Raman and thermal analysis to evaluate the gel formation of curdlan produced by Agrobacterium sp. IFO 13140 and determination of its rheological properties with food applicability.
    Mangolim CS; da Silva TT; Fenelon VC; do Nascimento A; Sato F; Matioli G
    Food Chem; 2017 Oct; 232():369-378. PubMed ID: 28490087
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thermo-responsive behavior and gelation of curdlan alkyl-ethers prepared by homogeneous reaction.
    Wu M; Li R; Liao Q; Wang P; Zhang H
    Carbohydr Polym; 2023 Jan; 300():120248. PubMed ID: 36372508
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular dynamics studies of side chain effect on the beta-1,3-D-glucan triple helix in aqueous solution.
    Okobira T; Miyoshi K; Uezu K; Sakurai K; Shinkai S
    Biomacromolecules; 2008 Mar; 9(3):783-8. PubMed ID: 18257529
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Preparation and characterization of curdlan with unique single-helical conformation and its assembly with Congo Red.
    Yan X; Liu B; Ru G; Feng J
    Carbohydr Polym; 2021 Jul; 263():117985. PubMed ID: 33858578
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Liquid crystalline gel with refractive index gradient of curdlan.
    Dobashi T; Nobe M; Yoshihara H; Yamamoto T; Konno A
    Langmuir; 2004 Aug; 20(16):6530-4. PubMed ID: 15274548
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Description of recovery method used for curdlan produced by Agrobacterium sp. IFO 13140 and its relation to the morphology and physicochemical and technological properties of the polysaccharide.
    Mangolim CS; Silva TT; Fenelon VC; Koga LN; Ferreira SB; Bruschi ML; Matioli G
    PLoS One; 2017; 12(2):e0171469. PubMed ID: 28245244
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Using particle tracking to probe the local dynamics of barley β-glucan solutions upon gelation.
    Moschakis T; Lazaridou A; Biliaderis CG
    J Colloid Interface Sci; 2012 Jun; 375(1):50-9. PubMed ID: 22436725
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Small angle x-ray scattering study of local structure and collapse transition of (1,3)-beta-D-glucan-chitosan gels.
    Sletmoen M; Stokke BT; Geissler E
    J Chem Phys; 2006 Aug; 125(5):054908. PubMed ID: 16942258
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Proposal of a new hydrogen-bonding form to maintain curdlan triple helix.
    Miyoshi K; Uezu K; Sakurai K; Shinkai S
    Chem Biodivers; 2004 Jun; 1(6):916-24. PubMed ID: 17191891
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Production and characterization of new families of polyglucuronic acids from TEMPO-NaOCl oxidation of curdlan.
    Delattre C; Rios L; Laroche C; Le NH; Lecerf D; Picton L; Berthon JY; Michaud P
    Int J Biol Macromol; 2009 Dec; 45(5):458-62. PubMed ID: 19716845
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effect of carboxymethylation on the macromolecular conformation of the (1 → 3)-β -D-glucan of curdlan in water.
    Cai Z; Zhang H
    Carbohydr Polym; 2021 Nov; 272():118456. PubMed ID: 34420716
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rheology and gelation of aqueous carboxymethylated curdlan solution: Impact of the degree of substitution.
    Wei Y; Cai Z; Ma A; Zhang H
    Carbohydr Polym; 2024 May; 332():121921. PubMed ID: 38431398
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.