BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

288 related articles for article (PubMed ID: 17456593)

  • 1. In vivo imaging and genetic analysis link bacterial motility and symbiosis in the zebrafish gut.
    Rawls JF; Mahowald MA; Goodman AL; Trent CM; Gordon JI
    Proc Natl Acad Sci U S A; 2007 May; 104(18):7622-7. PubMed ID: 17456593
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microbial colonization induces dynamic temporal and spatial patterns of NF-κB activation in the zebrafish digestive tract.
    Kanther M; Sun X; Mühlbauer M; Mackey LC; Flynn EJ; Bagnat M; Jobin C; Rawls JF
    Gastroenterology; 2011 Jul; 141(1):197-207. PubMed ID: 21439961
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gnotobiotic zebrafish reveal evolutionarily conserved responses to the gut microbiota.
    Rawls JF; Samuel BS; Gordon JI
    Proc Natl Acad Sci U S A; 2004 Mar; 101(13):4596-601. PubMed ID: 15070763
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of Population Bottlenecks and Colonization Factors during Assembly of Bacterial Communities within the Zebrafish Intestine.
    Stephens WZ; Wiles TJ; Martinez ES; Jemielita M; Burns AR; Parthasarathy R; Bohannan BJ; Guillemin K
    mBio; 2015 Oct; 6(6):e01163-15. PubMed ID: 26507229
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Commensal Microbiota Regulate Vertebrate Innate Immunity-Insights From the Zebrafish.
    Murdoch CC; Rawls JF
    Front Immunol; 2019; 10():2100. PubMed ID: 31555292
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Higher-Order Interactions Dampen Pairwise Competition in the Zebrafish Gut Microbiome.
    Sundarraman D; Hay EA; Martins DM; Shields DS; Pettinari NL; Parthasarathy R
    mBio; 2020 Oct; 11(5):. PubMed ID: 33051365
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phenotypic Parallelism during Experimental Adaptation of a Free-Living Bacterium to the Zebrafish Gut.
    Lebov JF; Schlomann BH; Robinson CD; Bohannan BJM
    mBio; 2020 Aug; 11(4):. PubMed ID: 32817106
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cross-regulation of Pseudomonas motility systems: the intimate relationship between flagella, pili and virulence.
    Kazmierczak BI; Schniederberend M; Jain R
    Curr Opin Microbiol; 2015 Dec; 28():78-82. PubMed ID: 26476804
    [TBL] [Abstract][Full Text] [Related]  

  • 9. FlhF is required for swimming and swarming in Pseudomonas aeruginosa.
    Murray TS; Kazmierczak BI
    J Bacteriol; 2006 Oct; 188(19):6995-7004. PubMed ID: 16980502
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evidence for two flagellar stators and their role in the motility of Pseudomonas aeruginosa.
    Toutain CM; Zegans ME; O'Toole GA
    J Bacteriol; 2005 Jan; 187(2):771-7. PubMed ID: 15629949
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reciprocal gut microbiota transplants from zebrafish and mice to germ-free recipients reveal host habitat selection.
    Rawls JF; Mahowald MA; Ley RE; Gordon JI
    Cell; 2006 Oct; 127(2):423-33. PubMed ID: 17055441
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Zebrafish Axenic Larvae Colonization with Human Intestinal Microbiota.
    Arias-Jayo N; Alonso-Saez L; Ramirez-Garcia A; Pardo MA
    Zebrafish; 2018 Apr; 15(2):96-106. PubMed ID: 29261035
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spatial and temporal features of the growth of a bacterial species colonizing the zebrafish gut.
    Jemielita M; Taormina MJ; Burns AR; Hampton JS; Rolig AS; Guillemin K; Parthasarathy R
    mBio; 2014 Dec; 5(6):. PubMed ID: 25516613
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Step-wise loss of bacterial flagellar torsion confers progressive phagocytic evasion.
    Lovewell RR; Collins RM; Acker JL; O'Toole GA; Wargo MJ; Berwin B
    PLoS Pathog; 2011 Sep; 7(9):e1002253. PubMed ID: 21949654
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [A simplified system for generation of germ-free zebrafish embryos and its application in Listeria monocytogenes infection].
    Shan Y; Zhang Y; Cheng C; Fang C; Pen J; Fang W
    Wei Sheng Wu Xue Bao; 2016 Nov; 56(11):1766-75. PubMed ID: 29741840
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Individual Members of the Microbiota Disproportionately Modulate Host Innate Immune Responses.
    Rolig AS; Parthasarathy R; Burns AR; Bohannan BJ; Guillemin K
    Cell Host Microbe; 2015 Nov; 18(5):613-20. PubMed ID: 26567512
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A bacterial immunomodulatory protein with lipocalin-like domains facilitates host-bacteria mutualism in larval zebrafish.
    Rolig AS; Sweeney EG; Kaye LE; DeSantis MD; Perkins A; Banse AV; Hamilton MK; Guillemin K
    Elife; 2018 Nov; 7():. PubMed ID: 30398151
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The putative Poc complex controls two distinct Pseudomonas aeruginosa polar motility mechanisms.
    Cowles KN; Moser TS; Siryaporn A; Nyakudarika N; Dixon W; Turner JJ; Gitai Z
    Mol Microbiol; 2013 Dec; 90(5):923-38. PubMed ID: 24102920
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of different concentrations of Microcystis aeruginosa on the intestinal microbiota and immunity of zebrafish (Danio rerio).
    Qian H; Zhang M; Liu G; Lu T; Sun L; Pan X
    Chemosphere; 2019 Jan; 214():579-586. PubMed ID: 30286424
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Study of host-microbe interactions in zebrafish.
    Milligan-Myhre K; Charette JR; Phennicie RT; Stephens WZ; Rawls JF; Guillemin K; Kim CH
    Methods Cell Biol; 2011; 105():87-116. PubMed ID: 21951527
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.