BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 17456603)

  • 1. Human prion proteins with pathogenic mutations share common conformational changes resulting in enhanced binding to glycosaminoglycans.
    Yin S; Pham N; Yu S; Li C; Wong P; Chang B; Kang SC; Biasini E; Tien P; Harris DA; Sy MS
    Proc Natl Acad Sci U S A; 2007 May; 104(18):7546-51. PubMed ID: 17456603
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ligand binding promotes prion protein aggregation--role of the octapeptide repeats.
    Yu S; Yin S; Pham N; Wong P; Kang SC; Petersen RB; Li C; Sy MS
    FEBS J; 2008 Nov; 275(22):5564-75. PubMed ID: 18959744
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Aggregation of prion protein with insertion mutations is proportional to the number of inserts.
    Yu S; Yin S; Li C; Wong P; Chang B; Xiao F; Kang SC; Yan H; Xiao G; Tien P; Sy MS
    Biochem J; 2007 Apr; 403(2):343-51. PubMed ID: 17187581
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prion proteins with insertion mutations have altered N-terminal conformation and increased ligand binding activity and are more susceptible to oxidative attack.
    Yin S; Yu S; Li C; Wong P; Chang B; Xiao F; Kang SC; Yan H; Xiao G; Grassi J; Tien P; Sy MS
    J Biol Chem; 2006 Apr; 281(16):10698-705. PubMed ID: 16478730
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Heparin binding by murine recombinant prion protein leads to transient aggregation and formation of RNA-resistant species.
    Vieira TC; Reynaldo DP; Gomes MP; Almeida MS; Cordeiro Y; Silva JL
    J Am Chem Soc; 2011 Jan; 133(2):334-44. PubMed ID: 21142149
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cell-surface prion protein interacts with glycosaminoglycans.
    Pan T; Wong BS; Liu T; Li R; Petersen RB; Sy MS
    Biochem J; 2002 Nov; 368(Pt 1):81-90. PubMed ID: 12186633
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prion protein with an octapeptide insertion has impaired neuroprotective activity in transgenic mice.
    Li A; Piccardo P; Barmada SJ; Ghetti B; Harris DA
    EMBO J; 2007 Jun; 26(11):2777-85. PubMed ID: 17510630
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The amino-terminal PrP domain is crucial to modulate prion misfolding and aggregation.
    Cordeiro Y; Kraineva J; Gomes MP; Lopes MH; Martins VR; Lima LM; Foguel D; Winter R; Silva JL
    Biophys J; 2005 Oct; 89(4):2667-76. PubMed ID: 16040743
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modulation of Glycosaminoglycans Affects PrPSc Metabolism but Does Not Block PrPSc Uptake.
    Wolf H; Graßmann A; Bester R; Hossinger A; Möhl C; Paulsen L; Groschup MH; Schätzl H; Vorberg I
    J Virol; 2015 Oct; 89(19):9853-64. PubMed ID: 26202247
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Glycosaminoglycan sulfation determines the biochemical properties of prion protein aggregates.
    Ellett LJ; Coleman BM; Shambrook MC; Johanssen VA; Collins SJ; Masters CL; Hill AF; Lawson VA
    Glycobiology; 2015 Jul; 25(7):745-55. PubMed ID: 25701659
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Glycosaminoglycan sulphation affects the seeded misfolding of a mutant prion protein.
    Lawson VA; Lumicisi B; Welton J; Machalek D; Gouramanis K; Klemm HM; Stewart JD; Masters CL; Hoke DE; Collins SJ; Hill AF
    PLoS One; 2010 Aug; 5(8):e12351. PubMed ID: 20808809
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Single octapeptide deletion selectively processes a pathogenic prion protein mutant on the cell surface.
    Lee Y; Lee D; Choi I; Song Y; Kang MJ; Kang SW
    Biochem Biophys Res Commun; 2016 Feb; 470(2):263-268. PubMed ID: 26774341
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Normal cellular prion protein with a methionine at position 129 has a more exposed helix 1 and is more prone to aggregate.
    Pham N; Yin S; Yu S; Wong P; Kang SC; Li C; Sy MS
    Biochem Biophys Res Commun; 2008 Apr; 368(4):875-81. PubMed ID: 18275852
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dominant-negative inhibition of prion replication in transgenic mice.
    Perrier V; Kaneko K; Safar J; Vergara J; Tremblay P; DeArmond SJ; Cohen FE; Prusiner SB; Wallace AC
    Proc Natl Acad Sci U S A; 2002 Oct; 99(20):13079-84. PubMed ID: 12271119
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Expansion of the octarepeat domain alters the misfolding pathway but not the folding pathway of the prion protein.
    Leliveld SR; Stitz L; Korth C
    Biochemistry; 2008 Jun; 47(23):6267-78. PubMed ID: 18473442
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Experimental approaches to the interaction of the prion protein with nucleic acids and glycosaminoglycans: Modulators of the pathogenic conversion.
    Silva JL; Vieira TC; Gomes MP; Rangel LP; Scapin SM; Cordeiro Y
    Methods; 2011 Mar; 53(3):306-17. PubMed ID: 21145399
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Prion protein structure and its relationships with pathogenesis].
    Muramoto T
    Rinsho Shinkeigaku; 2003 Nov; 43(11):813-6. PubMed ID: 15152472
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Prion proteins with pathogenic and protective mutations show similar structure and dynamics.
    Bae SH; Legname G; Serban A; Prusiner SB; Wright PE; Dyson HJ
    Biochemistry; 2009 Sep; 48(34):8120-8. PubMed ID: 19618915
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Conformational conversion of prion protein in prion diseases.
    Zhou Z; Xiao G
    Acta Biochim Biophys Sin (Shanghai); 2013 Jun; 45(6):465-76. PubMed ID: 23580591
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of an epitope in the C terminus of normal prion protein whose expression is modulated by binding events in the N terminus.
    Li R; Liu T; Wong BS; Pan T; Morillas M; Swietnicki W; O'Rourke K; Gambetti P; Surewicz WK; Sy MS
    J Mol Biol; 2000 Aug; 301(3):567-73. PubMed ID: 10966770
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.