These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

2450 related articles for article (PubMed ID: 17456745)

  • 1. DDOMAIN: Dividing structures into domains using a normalized domain-domain interaction profile.
    Zhou H; Xue B; Zhou Y
    Protein Sci; 2007 May; 16(5):947-55. PubMed ID: 17456745
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cross-over between discrete and continuous protein structure space: insights into automatic classification and networks of protein structures.
    Pascual-García A; Abia D; Ortiz AR; Bastolla U
    PLoS Comput Biol; 2009 Mar; 5(3):e1000331. PubMed ID: 19325884
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Toward consistent assignment of structural domains in proteins.
    Veretnik S; Bourne PE; Alexandrov NN; Shindyalov IN
    J Mol Biol; 2004 Jun; 339(3):647-78. PubMed ID: 15147847
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Partitioning protein structures into domains: why is it so difficult?
    Holland TA; Veretnik S; Shindyalov IN; Bourne PE
    J Mol Biol; 2006 Aug; 361(3):562-90. PubMed ID: 16863650
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Systematic comparison of SCOP and CATH: a new gold standard for protein structure analysis.
    Csaba G; Birzele F; Zimmer R
    BMC Struct Biol; 2009 Apr; 9():23. PubMed ID: 19374763
    [TBL] [Abstract][Full Text] [Related]  

  • 6. PDP: protein domain parser.
    Alexandrov N; Shindyalov I
    Bioinformatics; 2003 Feb; 19(3):429-30. PubMed ID: 12584135
    [TBL] [Abstract][Full Text] [Related]  

  • 7. dConsensus: a tool for displaying domain assignments by multiple structure-based algorithms and for construction of a consensus assignment.
    Alden K; Veretnik S; Bourne PE
    BMC Bioinformatics; 2010 Jun; 11():310. PubMed ID: 20529369
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A comparison of SCOP and CATH with respect to domain-domain interactions.
    Jefferson ER; Walsh TP; Barton GJ
    Proteins; 2008 Jan; 70(1):54-62. PubMed ID: 17634986
    [TBL] [Abstract][Full Text] [Related]  

  • 9. fastSCOP: a fast web server for recognizing protein structural domains and SCOP superfamilies.
    Tung CH; Yang JM
    Nucleic Acids Res; 2007 Jul; 35(Web Server issue):W438-43. PubMed ID: 17485476
    [TBL] [Abstract][Full Text] [Related]  

  • 10. AutoSCOP: automated prediction of SCOP classifications using unique pattern-class mappings.
    Gewehr JE; Hintermair V; Zimmer R
    Bioinformatics; 2007 May; 23(10):1203-10. PubMed ID: 17379694
    [TBL] [Abstract][Full Text] [Related]  

  • 11. DDBASE2.0: updated domain database with improved identification of structural domains.
    Vinayagam A; Shi J; Pugalenthi G; Meenakshi B; Blundell TL; Sowdhamini R
    Bioinformatics; 2003 Sep; 19(14):1760-4. PubMed ID: 14512346
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An Integrated Framework for Functional Annotation of Protein Structural Domains.
    Deng L; Chen Z
    IEEE/ACM Trans Comput Biol Bioinform; 2015; 12(4):902-13. PubMed ID: 26357331
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Towards an automatic classification of protein structural domains based on structural similarity.
    Sam V; Tai CH; Garnier J; Gibrat JF; Lee B; Munson PJ
    BMC Bioinformatics; 2008 Jan; 9():74. PubMed ID: 18237410
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genome3D: a UK collaborative project to annotate genomic sequences with predicted 3D structures based on SCOP and CATH domains.
    Lewis TE; Sillitoe I; Andreeva A; Blundell TL; Buchan DW; Chothia C; Cuff A; Dana JM; Filippis I; Gough J; Hunter S; Jones DT; Kelley LA; Kleywegt GJ; Minneci F; Mitchell A; Murzin AG; Ochoa-Montaño B; Rackham OJ; Smith J; Sternberg MJ; Velankar S; Yeats C; Orengo C
    Nucleic Acids Res; 2013 Jan; 41(Database issue):D499-507. PubMed ID: 23203986
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Automatic classification of protein structures using low-dimensional structure space mappings.
    Asarnow D; Singh R
    BMC Bioinformatics; 2014; 15 Suppl 2(Suppl 2):S1. PubMed ID: 24564500
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ab initio and homology based prediction of protein domains by recursive neural networks.
    Walsh I; Martin AJ; Mooney C; Rubagotti E; Vullo A; Pollastri G
    BMC Bioinformatics; 2009 Jun; 10():195. PubMed ID: 19558651
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The value of protein structure classification information-Surveying the scientific literature.
    Fox NK; Brenner SE; Chandonia JM
    Proteins; 2015 Nov; 83(11):2025-38. PubMed ID: 26313554
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improving the performance of DomainParser for structural domain partition using neural network.
    Guo JT; Xu D; Kim D; Xu Y
    Nucleic Acids Res; 2003 Feb; 31(3):944-52. PubMed ID: 12560490
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gene ontology functional annotations at the structural domain level.
    Lopez D; Pazos F
    Proteins; 2009 Aug; 76(3):598-607. PubMed ID: 19241468
    [TBL] [Abstract][Full Text] [Related]  

  • 20. F2CS: FSSP to CATH and SCOP prediction server.
    Getz G; Starovolsky A; Domany E
    Bioinformatics; 2004 Sep; 20(13):2150-2. PubMed ID: 15059833
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 123.