These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 1745692)

  • 1. Rapid reentrainment of the circadian clock itself, but not the measurable activity rhythms to a new light-dark cycle in the rat.
    Takamure M; Murakami N; Takahashi K; Kuroda H; Etoh T
    Physiol Behav; 1991 Aug; 50(2):443-9. PubMed ID: 1745692
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Two Coupled Circadian Oscillators Are Involved in Nonphotic Acceleration of Reentrainment to Shifted Light Cycles in Mice.
    Yamanaka Y; Honma S; Honma KI
    J Biol Rhythms; 2018 Dec; 33(6):614-625. PubMed ID: 30178701
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Temperature rhythm reentrains faster than locomotor rhythm after a light phase shift.
    Satoh Y; Kawai H; Kudo N; Kawashima Y; Mitsumoto A
    Physiol Behav; 2006 Jul; 88(4-5):404-10. PubMed ID: 16730361
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Resetting of the rat circadian clock after a shift in the light/dark cycle depends on the photoperiod.
    Humlová M; Illnerová H
    Neurosci Res; 1992 Mar; 13(2):147-53. PubMed ID: 1316593
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of aging on the circadian rhythm of wheel-running activity in C57BL/6 mice.
    Valentinuzzi VS; Scarbrough K; Takahashi JS; Turek FW
    Am J Physiol; 1997 Dec; 273(6):R1957-64. PubMed ID: 9435649
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Scheduled exposures to a novel environment with a running-wheel differentially accelerate re-entrainment of mice peripheral clocks to new light-dark cycles.
    Yamanaka Y; Honma S; Honma K
    Genes Cells; 2008 May; 13(5):497-507. PubMed ID: 18429821
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Restraint stress delays reentrainment in male and female diurnal and nocturnal rodents.
    Mohawk JA; Lee TM
    J Biol Rhythms; 2005 Jun; 20(3):245-56. PubMed ID: 15851531
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Entrainment of the rat motor activity rhythm: effects of the light-dark cycle and physical exercise.
    Cambras T; Vilaplana J; Campuzano A; Canal-Corretger MM; Carulla M; Díez-Noguera A
    Physiol Behav; 2000; 70(3-4):227-32. PubMed ID: 11006420
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Restricted daytime feeding attenuates reentrainment of the circadian melatonin rhythm after an 8-h phase advance of the light-dark cycle.
    Kalsbeek A; Barassin S; van Heerikhuize JJ; van der Vliet J; Buijs RM
    J Biol Rhythms; 2000 Feb; 15(1):57-66. PubMed ID: 10677017
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The endogenous melatonin (MT) signal facilitates reentrainment of the circadian system to light-induced phase advances by acting upon MT2 receptors.
    Pfeffer M; Rauch A; Korf HW; von Gall C
    Chronobiol Int; 2012 May; 29(4):415-29. PubMed ID: 22489607
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reentrainment of motor activity and spontaneous neuronal activity in the suprachiasmatic nucleus of Djungarian hamsters.
    Puchalski W; Saarela S; Lynch GR
    J Biol Rhythms; 1996 Dec; 11(4):302-10. PubMed ID: 8946257
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Olfactory bulbectomy impedes social but not photic reentrainment of circadian rhythms in female Octodon degus.
    Goel N; Lee TM
    J Biol Rhythms; 1997 Aug; 12(4):362-70. PubMed ID: 9438884
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Loss of circadian behavioural rhythms in rats kept in constant darkness.
    Usui S; Okazaki T
    Psychiatry Clin Neurosci; 2002 Jun; 56(3):217-8. PubMed ID: 12047564
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of constant darkness and constant light on circadian organization and reproductive responses in the ram.
    Ebling FJ; Lincoln GA; Wollnik F; Anderson N
    J Biol Rhythms; 1988; 3(4):365-84. PubMed ID: 2979646
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Altered circadian rhythm reentrainment to light phase shifts in rats with low levels of brain angiotensinogen.
    Campos LA; Plehm R; Cipolla-Neto J; Bader M; Baltatu OC
    Am J Physiol Regul Integr Comp Physiol; 2006 Apr; 290(4):R1122-7. PubMed ID: 16339384
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Long-term effects of neonatal alcohol exposure on photic reentrainment and phase-shifting responses of the activity rhythm in adult rats.
    Allen GC; Farnell YZ; Maeng JU; West JR; Chen WJ; Earnest DJ
    Alcohol; 2005 Oct; 37(2):79-88. PubMed ID: 16584971
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Circadian rhythms of body temperature and motor activity in rodents their relationships with the light-dark cycle.
    Benstaali C; Mailloux A; Bogdan A; Auzéby A; Touitou Y
    Life Sci; 2001 May; 68(24):2645-56. PubMed ID: 11400908
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of lighting condition on circadian behavior in 5-HT1A receptor knockout mice.
    Smith VM; Jeffers RT; McAllister BB; Basu P; Dyck RH; Antle MC
    Physiol Behav; 2015 Feb; 139():136-44. PubMed ID: 25446224
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phase shift magnitude and direction determine whether Siberian hamsters reentrain to the photocycle.
    Ruby NF; Joshi N; Heller HC
    J Biol Rhythms; 1998 Dec; 13(6):506-17. PubMed ID: 9850011
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Consequences of manganese intoxication on the circadian rest-activity rhythms in the rat.
    Bouabid S; Fifel K; Benazzouz A; Lakhdar-Ghazal N
    Neuroscience; 2016 Sep; 331():13-23. PubMed ID: 27316552
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.