These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
224 related articles for article (PubMed ID: 17457421)
1. Reducing charge recombination losses in solid state dye sensitized solar cells: the use of donor-acceptor sensitizer dyes. Handa S; Wietasch H; Thelakkat M; Durrant JR; Haque SA Chem Commun (Camb); 2007 May; (17):1725-7. PubMed ID: 17457421 [TBL] [Abstract][Full Text] [Related]
2. Recent developments in solid-state dye-sensitized solar cells. Yum JH; Chen P; Grätzel M; Nazeeruddin MK ChemSusChem; 2008; 1(8-9):699-707. PubMed ID: 18686289 [TBL] [Abstract][Full Text] [Related]
3. Efficient and stable solid-state dye-sensitized solar cells based on a high-molar-extinction-coefficient sensitizer. Wang M; Moon SJ; Xu M; Chittibabu K; Wang P; Cevey-Ha NL; Humphry-Baker R; Zakeeruddin SM; Grätzel M Small; 2010 Jan; 6(2):319-24. PubMed ID: 19902434 [TBL] [Abstract][Full Text] [Related]
4. Modified triphenylamine-dicyanovinyl-based donor-acceptor dyes with enhanced power conversion efficiency of p-type dye-sensitized solar cells. Zhu L; Yang H; Zhong C; Li CM Chem Asian J; 2012 Dec; 7(12):2791-5. PubMed ID: 22744776 [TBL] [Abstract][Full Text] [Related]
5. A dendritic oligothiophene ruthenium sensitizer for stable dye-sensitized solar cells. Sauvage F; Fischer MK; Mishra A; Zakeeruddin SM; Nazeeruddin MK; Bäuerle P; Grätzel M ChemSusChem; 2009; 2(8):761-8. PubMed ID: 19569164 [TBL] [Abstract][Full Text] [Related]
6. Engineering organic sensitizers for iodine-free dye-sensitized solar cells: red-shifted current response concomitant with attenuated charge recombination. Bai Y; Zhang J; Zhou D; Wang Y; Zhang M; Wang P J Am Chem Soc; 2011 Aug; 133(30):11442-5. PubMed ID: 21736365 [TBL] [Abstract][Full Text] [Related]
7. Electron transfer dynamics in dye-sensitized solar cells utilizing oligothienylvinylene derivates as organic sensitizers. Clifford JN; Forneli A; López-Arroyo L; Caballero R; de la Cruz P; Langa F; Palomares E ChemSusChem; 2009; 2(4):344-9. PubMed ID: 19338013 [TBL] [Abstract][Full Text] [Related]
8. Charge separation in a nonfluorescent donor-acceptor dyad derived from boron dipyrromethene dye, leading to photocurrent generation. Hattori S; Ohkubo K; Urano Y; Sunahara H; Nagano T; Wada Y; Tkachenko NV; Lemmetyinen H; Fukuzumi S J Phys Chem B; 2005 Aug; 109(32):15368-75. PubMed ID: 16852949 [TBL] [Abstract][Full Text] [Related]
9. Starburst triarylamine based dyes for efficient dye-sensitized solar cells. Ning Z; Zhang Q; Wu W; Pei H; Liu B; Tian H J Org Chem; 2008 May; 73(10):3791-7. PubMed ID: 18412319 [TBL] [Abstract][Full Text] [Related]
10. Alkyl chain barriers for kinetic optimization in dye-sensitized solar cells. Kroeze JE; Hirata N; Koops S; Nazeeruddin MK; Schmidt-Mende L; Grätzel M; Durrant JR J Am Chem Soc; 2006 Dec; 128(50):16376-83. PubMed ID: 17165794 [TBL] [Abstract][Full Text] [Related]
11. X-ray absorption spectroscopy of biomimetic dye molecules for solar cells. Cook PL; Liu X; Yang W; Himpsel FJ J Chem Phys; 2009 Nov; 131(19):194701. PubMed ID: 19929065 [TBL] [Abstract][Full Text] [Related]
12. A strategy to increase the efficiency of the dye-sensitized TiO2 solar cells operated by photoexcitation of dye-to-TiO2 charge-transfer bands. Tae EL; Lee SH; Lee JK; Yoo SS; Kang EJ; Yoon KB J Phys Chem B; 2005 Dec; 109(47):22513-22. PubMed ID: 16853932 [TBL] [Abstract][Full Text] [Related]
13. Molecular engineering of organic dyes with a hole-extending donor tail for efficient all-solid-state dye-sensitized solar cells. Lu J; Chang YC; Cheng HY; Wu HP; Cheng Y; Wang M; Diau EW ChemSusChem; 2015 Aug; 8(15):2529-36. PubMed ID: 26119886 [TBL] [Abstract][Full Text] [Related]
14. Characteristics of the iodide/triiodide redox mediator in dye-sensitized solar cells. Boschloo G; Hagfeldt A Acc Chem Res; 2009 Nov; 42(11):1819-26. PubMed ID: 19845388 [TBL] [Abstract][Full Text] [Related]
15. Rhodanine dyes for dye-sensitized solar cells : spectroscopy, energy levels and photovoltaic performance. Marinado T; Hagberg DP; Hedlund M; Edvinsson T; Johansson EM; Boschloo G; Rensmo H; Brinck T; Sun L; Hagfeldt A Phys Chem Chem Phys; 2009 Jan; 11(1):133-41. PubMed ID: 19081916 [TBL] [Abstract][Full Text] [Related]
16. Cyclopentadithiophene bridged donor-acceptor dyes achieve high power conversion efficiencies in dye-sensitized solar cells based on the tris-cobalt bipyridine redox couple. Tsao HN; Yi C; Moehl T; Yum JH; Zakeeruddin SM; Nazeeruddin MK; Grätzel M ChemSusChem; 2011 May; 4(5):591-4. PubMed ID: 21557495 [No Abstract] [Full Text] [Related]
17. Tris(2-(1H-pyrazol-1-yl)pyridine)cobalt(III) as p-type dopant for organic semiconductors and its application in highly efficient solid-state dye-sensitized solar cells. Burschka J; Dualeh A; Kessler F; Baranoff E; Cevey-Ha NL; Yi C; Nazeeruddin MK; Grätzel M J Am Chem Soc; 2011 Nov; 133(45):18042-5. PubMed ID: 21972850 [TBL] [Abstract][Full Text] [Related]
18. Solid-state dye-sensitized TiO(2) solar cells based on a sensitizer covalently wired to a hole conducting polymer. Houarner-Rassin C; Blart E; Buvat P; Odobel F Photochem Photobiol Sci; 2008 Jul; 7(7):789-93. PubMed ID: 18597026 [TBL] [Abstract][Full Text] [Related]
20. Voltage-enhancement mechanisms of an organic dye in high open-circuit voltage solid-state dye-sensitized solar cells. Jang SR; Zhu K; Ko MJ; Kim K; Kim C; Park NG; Frank AJ ACS Nano; 2011 Oct; 5(10):8267-74. PubMed ID: 21932767 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]