These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

244 related articles for article (PubMed ID: 17457514)

  • 21. NmerA of Tn501 mercuric ion reductase: structural modulation of the pKa values of the metal binding cysteine thiols.
    Ledwidge R; Hong B; Dötsch V; Miller SM
    Biochemistry; 2010 Oct; 49(41):8988-98. PubMed ID: 20828160
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Structures of the reduced and mercury-bound forms of MerP, the periplasmic protein from the bacterial mercury detoxification system.
    Steele RA; Opella SJ
    Biochemistry; 1997 Jun; 36(23):6885-95. PubMed ID: 9188683
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Intracellular inducer Hg2+ concentration is rate determining for the expression of the mercury-resistance operon in cells.
    Yu H; Chu L; Misra TK
    J Bacteriol; 1996 May; 178(9):2712-4. PubMed ID: 8626343
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Mutagenesis of the N- and C-terminal cysteine pairs of Tn501 mercuric ion reductase: consequences for bacterial detoxification of mercurials.
    Moore MJ; Walsh CT
    Biochemistry; 1989 Feb; 28(3):1183-94. PubMed ID: 2540817
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Sequence and analysis of a plasmid-encoded mercury resistance operon from Mycobacterium marinum identifies MerH, a new mercuric ion transporter.
    Schué M; Dover LG; Besra GS; Parkhill J; Brown NL
    J Bacteriol; 2009 Jan; 191(1):439-44. PubMed ID: 18931130
    [TBL] [Abstract][Full Text] [Related]  

  • 26. NMR structure determination of a membrane protein with two transmembrane helices in micelles: MerF of the bacterial mercury detoxification system.
    Howell SC; Mesleh MF; Opella SJ
    Biochemistry; 2005 Apr; 44(13):5196-206. PubMed ID: 15794657
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Nucleotide sequence of a gene from the Pseudomonas transposon Tn501 encoding mercuric reductase.
    Brown NL; Ford SJ; Pridmore RD; Fritzinger DC
    Biochemistry; 1983 Aug; 22(17):4089-95. PubMed ID: 6311258
    [TBL] [Abstract][Full Text] [Related]  

  • 28. An initial characterization of the mercury resistance (mer) system of the thermophilic bacterium Thermus thermophilus HB27.
    Wang Y; Freedman Z; Lu-Irving P; Kaletsky R; Barkay T
    FEMS Microbiol Ecol; 2009 Jan; 67(1):118-29. PubMed ID: 19120462
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effect of gene amplification on mercuric ion reduction activity of Escherichia coli.
    Philippidis GP; Malmberg LH; Hu WS; Schottel JL
    Appl Environ Microbiol; 1991 Dec; 57(12):3558-64. PubMed ID: 1785930
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Structural and functional characterization of mercuric reductase from Lysinibacillus sphaericus strain G1.
    Bafana A; Khan F; Suguna K
    Biometals; 2017 Oct; 30(5):809-819. PubMed ID: 28894951
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Structural characterization of intramolecular Hg(2+) transfer between flexibly linked domains of mercuric ion reductase.
    Johs A; Harwood IM; Parks JM; Nauss RE; Smith JC; Liang L; Miller SM
    J Mol Biol; 2011 Oct; 413(3):639-56. PubMed ID: 21893070
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Mercuric reductase genes (merA) and mercury resistance plasmids in High Arctic snow, freshwater and sea-ice brine.
    Møller AK; Barkay T; Hansen MA; Norman A; Hansen LH; Sørensen SJ; Boyd ES; Kroer N
    FEMS Microbiol Ecol; 2014 Jan; 87(1):52-63. PubMed ID: 23909591
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Modeling Mercury in Proteins.
    Parks JM; Smith JC
    Methods Enzymol; 2016; 578():103-22. PubMed ID: 27497164
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Response to mercury (II) ions in Methylococcus capsulatus (Bath).
    Boden R; Murrell JC
    FEMS Microbiol Lett; 2011 Nov; 324(2):106-10. PubMed ID: 22092810
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The mercury resistance (mer) operon in a marine gliding flavobacterium, Tenacibaculum discolor 9A5.
    Allen RC; Tu YK; Nevarez MJ; Bobbs AS; Friesen JW; Lorsch JR; McCauley JA; Voet JG; Hamlett NV
    FEMS Microbiol Ecol; 2013 Jan; 83(1):135-48. PubMed ID: 22816663
    [TBL] [Abstract][Full Text] [Related]  

  • 36. C-terminal cysteines of Tn501 mercuric ion reductase.
    Moore MJ; Miller SM; Walsh CT
    Biochemistry; 1992 Feb; 31(6):1677-85. PubMed ID: 1531297
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Functioning of the mercury resistance operon at extremely high Hg(II) loads in a chemostat: a proteome analysis.
    Leonhäuser J; Wang W; Deckwer WD; Wagner-Döbler I
    J Biotechnol; 2007 Dec; 132(4):469-80. PubMed ID: 17904239
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Thermal Stability of a Mercuric Reductase from the Red Sea Atlantis II Hot Brine Environment as Analyzed by Site-Directed Mutagenesis.
    Maged M; El Hosseiny A; Saadeldin MK; Aziz RK; Ramadan E
    Appl Environ Microbiol; 2019 Feb; 85(3):. PubMed ID: 30446558
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Tn5044-conferred mercury resistance depends on temperature: the complexity of the character of thermosensitivity.
    Kholodii G; Bogdanova E
    Genetica; 2002 Jun; 115(2):233-41. PubMed ID: 12403178
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Polypeptides specified by the mercuric resistance (mer) operon of plasmid R100.
    Bhriain NN; Foster TJ
    Gene; 1986; 42(3):323-30. PubMed ID: 3015742
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.