These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 17457520)

  • 1. Western array analysis of cell cycle protein changes during the hyperplastic to hypertrophic transition in heart development.
    Evans HJ; Goodwin RL
    Mol Cell Biochem; 2007 Sep; 303(1-2):189-99. PubMed ID: 17457520
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Expressions and activities of cell cycle regulatory molecules during the transition from myocyte hyperplasia to hypertrophy.
    Poolman RA; Brooks G
    J Mol Cell Cardiol; 1998 Oct; 30(10):2121-35. PubMed ID: 9799664
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evidence of myocyte hyperplasia in hypertrophic cardiomyopathy and other disorders with myocardial hypertrophy?
    Ferrans VJ; Rodríguez ER
    Z Kardiol; 1987; 76 Suppl 3():20-5. PubMed ID: 2963448
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cardiac myosin binding protein C regulates postnatal myocyte cytokinesis.
    Jiang J; Burgon PG; Wakimoto H; Onoue K; Gorham JM; O'Meara CC; Fomovsky G; McConnell BK; Lee RT; Seidman JG; Seidman CE
    Proc Natl Acad Sci U S A; 2015 Jul; 112(29):9046-51. PubMed ID: 26153423
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inducible activation of c-Myc in adult myocardium in vivo provokes cardiac myocyte hypertrophy and reactivation of DNA synthesis.
    Xiao G; Mao S; Baumgarten G; Serrano J; Jordan MC; Roos KP; Fishbein MC; MacLellan WR
    Circ Res; 2001 Dec; 89(12):1122-9. PubMed ID: 11739276
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transgenic animals as a tool for studying the effect of the c-myc proto-oncogene on cardiac development.
    Jackson T; Allard MF; Sreenan CM; Doss LK; Bishop SP; Swain JL
    Mol Cell Biochem; 1991 May 29-Jun 12; 104(1-2):15-9. PubMed ID: 1921994
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rapid transition of cardiac myocytes from hyperplasia to hypertrophy during postnatal development.
    Li F; Wang X; Capasso JM; Gerdes AM
    J Mol Cell Cardiol; 1996 Aug; 28(8):1737-46. PubMed ID: 8877783
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cell cycle-related changes in the voltage-gated Ca2+ currents in cultured newborn rat ventricular myocytes.
    Guo W; Kamiya K; Kodama I; Toyama J
    J Mol Cell Cardiol; 1998 Jun; 30(6):1095-103. PubMed ID: 9689584
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Expression and activities of cyclins and cyclin-dependent kinases in developing rat ventricular myocytes.
    Brooks G; Poolman RA; McGill CJ; Li JM
    J Mol Cell Cardiol; 1997 Aug; 29(8):2261-71. PubMed ID: 9281457
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multimodal Regulation of Cardiac Myocyte Proliferation.
    Yuan X; Braun T
    Circ Res; 2017 Jul; 121(3):293-309. PubMed ID: 28729454
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cardiac myocyte cell cycle control in development, disease, and regeneration.
    Ahuja P; Sdek P; MacLellan WR
    Physiol Rev; 2007 Apr; 87(2):521-44. PubMed ID: 17429040
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hypertrophic stimuli induce transforming growth factor-beta 1 expression in rat ventricular myocytes.
    Takahashi N; Calderone A; Izzo NJ; Mäki TM; Marsh JD; Colucci WS
    J Clin Invest; 1994 Oct; 94(4):1470-6. PubMed ID: 7929822
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Global gene expression analysis combined with a genomics approach for the identification of signal transduction networks involved in postnatal mouse myocardial proliferation and development.
    Wang R; Su C; Wang X; Fu Q; Gao X; Zhang C; Yang J; Yang X; Wei M
    Int J Mol Med; 2018 Jan; 41(1):311-321. PubMed ID: 29115400
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Alterations in sarcomere function modify the hyperplastic to hypertrophic transition phase of mammalian cardiomyocyte development.
    Nixon BR; Williams AF; Glennon MS; de Feria AE; Sebag SC; Baldwin HS; Becker JR
    JCI Insight; 2017 Feb; 2(4):e90656. PubMed ID: 28239655
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hyperplasia and hypertrophy of chicken cardiac myocytes during posthatching development.
    Li F; McNelis MR; Lustig K; Gerdes AM
    Am J Physiol; 1997 Aug; 273(2 Pt 2):R518-26. PubMed ID: 9277534
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regulation of Kv4.2 and Kv1.4 K+ channel expression by myocardial hypertrophic factors in cultured newborn rat ventricular cells.
    Guo W; Kamiya K; Hojo M; Kodama I; Toyama J
    J Mol Cell Cardiol; 1998 Jul; 30(7):1449-55. PubMed ID: 9710812
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Induction of cell-cycle inhibitor p21 in rat ventricular myocytes during early postnatal transition from hyperplasia to hypertrophy.
    Horký M; Kuchtícková S; Vojtesek B; Kolár F
    Physiol Res; 1997; 46(3):233-5. PubMed ID: 9728512
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterisation and regulation of E2F-6 and E2F-6b in the rat heart: a potential target for myocardial regeneration?
    Movassagh M; Bicknell KA; Brooks G
    J Pharm Pharmacol; 2006 Jan; 58(1):73-82. PubMed ID: 16393466
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The transcriptional coactivator CAMTA2 stimulates cardiac growth by opposing class II histone deacetylases.
    Song K; Backs J; McAnally J; Qi X; Gerard RD; Richardson JA; Hill JA; Bassel-Duby R; Olson EN
    Cell; 2006 May; 125(3):453-66. PubMed ID: 16678093
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regulation of cardiomyocyte proliferation and myocardial growth during development by FOXO transcription factors.
    Evans-Anderson HJ; Alfieri CM; Yutzey KE
    Circ Res; 2008 Mar; 102(6):686-94. PubMed ID: 18218983
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.