BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

243 related articles for article (PubMed ID: 17457651)

  • 1. A mathematical model of valveless pumping: a lumped model with time-dependent compliance, resistance, and inertia.
    Jung E
    Bull Math Biol; 2007 Oct; 69(7):2181-98. PubMed ID: 17457651
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Valveless pumping in a fluid-filled closed elastic tube-system: one-dimensional theory with experimental validation.
    Ottesen JT
    J Math Biol; 2003 Apr; 46(4):309-32. PubMed ID: 12673509
    [TBL] [Abstract][Full Text] [Related]  

  • 3. How does the tubular embryonic heart work? Looking for the physical mechanism generating unidirectional blood flow in the valveless embryonic heart tube.
    Männer J; Wessel A; Yelbuz TM
    Dev Dyn; 2010 Apr; 239(4):1035-46. PubMed ID: 20235196
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A concentrated parameter model for the human cardiovascular system including heart valve dynamics and atrioventricular interaction.
    Korakianitis T; Shi Y
    Med Eng Phys; 2006 Sep; 28(7):613-28. PubMed ID: 16293439
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Behavior of a viscoelastic valveless pump: a simple theory with experimental validation.
    Babbs CF
    Biomed Eng Online; 2010 Aug; 9():42. PubMed ID: 20807440
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Computational model for the transition from peristaltic to pulsatile flow in the embryonic heart tube.
    Taber LA; Zhang J; Perucchio R
    J Biomech Eng; 2007 Jun; 129(3):441-9. PubMed ID: 17536912
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of an in-vitro circulatory system with known resistance and capacitance.
    Offerdahl CD; Schaub JD; Koenig SC; Swope RD; Ewert DL
    Biomed Sci Instrum; 1996; 32():183-8. PubMed ID: 8672667
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of a mathematical model of the human circulatory system.
    Conlon MJ; Russell DL; Mussivand T
    Ann Biomed Eng; 2006 Sep; 34(9):1400-13. PubMed ID: 16900394
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Numerical modeling of 1D arterial networks coupled with a lumped parameters description of the heart.
    Formaggia L; Lamponi D; Tuveri M; Veneziani A
    Comput Methods Biomech Biomed Engin; 2006 Oct; 9(5):273-88. PubMed ID: 17132614
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [A lumped parameter model of the peripheral extra-corporeal circulation].
    Wang X; Tan X; Pei J; Zheng P
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2001 Sep; 18(3):366-8, 407. PubMed ID: 11605490
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reduction of compartment compliance increases venous flow pulsatility and lowers apparent vascular compliance: implications for cerebral blood flow hemodynamics.
    Hu X; Alwan AA; Rubinstein EH; Bergsneider M
    Med Eng Phys; 2006 May; 28(4):304-14. PubMed ID: 16112597
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Describing the pumping heart as a pressure source.
    Danielsen M; Ottesen JT
    J Theor Biol; 2001 Sep; 212(1):71-81. PubMed ID: 11527446
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dimensionless analysis of valveless pumping in a thick-wall elastic tube: Application to the tubular embryonic heart.
    Kozlovsky P; Rosenfeld M; Jaffa AJ; Elad D
    J Biomech; 2015 Jun; 48(9):1652-61. PubMed ID: 25835790
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Model-based study of time-dependent coronary blood flow distribution in left ventricular wall and its dependences on coronary pressure driving force].
    Liu Q; Zheng Z; Wu Y; Wu X
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 1997 Sep; 14(3):212-6. PubMed ID: 11326834
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A review of pulse propagation in viscoelastic arteries with distributed flow leakage.
    Hoff CJ; Yang WJ
    Biomed Mater Eng; 1994; 4(6):419-37. PubMed ID: 7833786
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A lumped parameter model of left ventricular filling-pressure waveforms.
    Waite L; Schulz S; Szabo G; Vahl CF
    Biomed Sci Instrum; 2000; 36():75-80. PubMed ID: 10834212
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mock circulatory system for the evaluation of left ventricular assist devices, endoluminal prostheses, and vascular diseases.
    Legendre D; Fonseca J; Andrade A; Biscegli JF; Manrique R; Guerrino D; Prakasan AK; Ortiz JP; Lucchi JC
    Artif Organs; 2008 Jun; 32(6):461-7. PubMed ID: 18422796
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The influence of nonlinear intra-thoracic vascular behaviour and compression characteristics on cardiac output during CPR.
    Koeken Y; Aelen P; Noordergraaf GJ; Paulussen I; Woerlee P; Noordergraaf A
    Resuscitation; 2011 May; 82(5):538-44. PubMed ID: 21324578
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Computational models of heart pumping efficiencies based on contraction waves in spiral elastic bands.
    Grosberg A; Gharib M
    J Theor Biol; 2009 Apr; 257(3):359-70. PubMed ID: 19109980
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Coupling arterial windkessel with peripheral vasomotion: modeling the effects on low-frequency oscillations.
    Baselli G; Porta A; Pagani M
    IEEE Trans Biomed Eng; 2006 Jan; 53(1):53-64. PubMed ID: 16402603
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.