These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
188 related articles for article (PubMed ID: 17457818)
1. Distributing a fixed amount of cyclic loading to tendon explants over longer periods induces greater cellular and mechanical responses. Devkota AC; Tsuzaki M; Almekinders LC; Banes AJ; Weinhold PS J Orthop Res; 2007 Aug; 25(8):1078-86. PubMed ID: 17457818 [TBL] [Abstract][Full Text] [Related]
2. Cyclic loading alters biomechanical properties and secretion of PGE2 and NO from tendon explants. Flick J; Devkota A; Tsuzaki M; Almekinders L; Weinhold P Clin Biomech (Bristol); 2006 Jan; 21(1):99-106. PubMed ID: 16198031 [TBL] [Abstract][Full Text] [Related]
3. Prostaglandin E(2), collagenase, and cell death responses depend on cyclical load magnitude in an explant model of tendinopathy. Devkota AC; Weinhold PS Connect Tissue Res; 2010 Aug; 51(4):306-13. PubMed ID: 20175712 [TBL] [Abstract][Full Text] [Related]
4. Stochastic amplitude-modulated stretching of rabbit flexor digitorum profundus tendons reduces stiffness compared to cyclic loading but does not affect tenocyte metabolism. Steiner TH; Bürki A; Ferguson SJ; Gantenbein-Ritter B BMC Musculoskelet Disord; 2012 Nov; 13():222. PubMed ID: 23150982 [TBL] [Abstract][Full Text] [Related]
5. An in vitro scratch tendon tissue injury model: effects of high frequency low magnitude loading. Adekanmbi I; Zargar N; Hulley P Connect Tissue Res; 2017 Mar; 58(2):162-171. PubMed ID: 27294971 [TBL] [Abstract][Full Text] [Related]
6. Biomechanics and pathophysiology of overuse tendon injuries: ideas on insertional tendinopathy. Maganaris CN; Narici MV; Almekinders LC; Maffulli N Sports Med; 2004; 34(14):1005-17. PubMed ID: 15571430 [TBL] [Abstract][Full Text] [Related]
7. Production of PGE(2) increases in tendons subjected to repetitive mechanical loading and induces differentiation of tendon stem cells into non-tenocytes. Zhang J; Wang JH J Orthop Res; 2010 Feb; 28(2):198-203. PubMed ID: 19688869 [TBL] [Abstract][Full Text] [Related]
8. The relationships between cyclic fatigue loading, changes in initial mechanical properties, and the in vivo temporal mechanical response of the rat patellar tendon. Andarawis-Puri N; Sereysky JB; Jepsen KJ; Flatow EL J Biomech; 2012 Jan; 45(1):59-65. PubMed ID: 22055428 [TBL] [Abstract][Full Text] [Related]
9. Low stress tendon fatigue is a relatively rapid process in the context of overuse injuries. Parent G; Huppé N; Langelier E Ann Biomed Eng; 2011 May; 39(5):1535-45. PubMed ID: 21287276 [TBL] [Abstract][Full Text] [Related]
11. Response of a collagenase-induced tendon injury to treatment with a polysulphated glycosaminoglycan (Adequan). Oryan A; Goodship AE; Silver IA Connect Tissue Res; 2008; 49(5):351-60. PubMed ID: 18991088 [TBL] [Abstract][Full Text] [Related]
12. Time, stress, and location dependent chondrocyte death and collagen damage in cyclically loaded articular cartilage. Chen CT; Bhargava M; Lin PM; Torzilli PA J Orthop Res; 2003 Sep; 21(5):888-98. PubMed ID: 12919878 [TBL] [Abstract][Full Text] [Related]
13. Collagen fibrils in functionally distinct tendons have differing structural responses to tendon rupture and fatigue loading. Herod TW; Chambers NC; Veres SP Acta Biomater; 2016 Sep; 42():296-307. PubMed ID: 27321189 [TBL] [Abstract][Full Text] [Related]
14. Early stage fatigue damage occurs in bovine tendon fascicles in the absence of changes in mechanics at either the gross or micro-structural level. Shepherd JH; Riley GP; Screen HR J Mech Behav Biomed Mater; 2014 Oct; 38():163-72. PubMed ID: 25001495 [TBL] [Abstract][Full Text] [Related]
15. Effect of stress deprivation and cyclic tensile loading on the material and morphologic properties of canine flexor digitorum profundus tendon: an in vitro study. Hannafin JA; Arnoczky SP; Hoonjan A; Torzilli PA J Orthop Res; 1995 Nov; 13(6):907-14. PubMed ID: 8544028 [TBL] [Abstract][Full Text] [Related]
16. What is the impact of inflammation on the critical interplay between mechanical signaling and biochemical changes in tendon matrix? Kjaer M; Bayer ML; Eliasson P; Heinemeier KM J Appl Physiol (1985); 2013 Sep; 115(6):879-83. PubMed ID: 23620492 [TBL] [Abstract][Full Text] [Related]
17. Inflammatory cells do not decrease the ultimate tensile strength of intact tendons in vivo and in vitro: protective role of mechanical loading. Marsolais D; Duchesne E; Côté CH; Frenette J J Appl Physiol (1985); 2007 Jan; 102(1):11-7. PubMed ID: 16916923 [TBL] [Abstract][Full Text] [Related]
18. Ultrastructural response of tendon to excessive level or duration of tensile load supports that collagen fibrils are mechanically continuous. Hijazi KM; Singfield KL; Veres SP J Mech Behav Biomed Mater; 2019 Sep; 97():30-40. PubMed ID: 31085458 [TBL] [Abstract][Full Text] [Related]
19. Effect of repetition rate on the formation of microtears in tendon in an in vivo cyclical loading model. Nakama LH; King KB; Abrahamsson S; Rempel DM J Orthop Res; 2007 Sep; 25(9):1176-84. PubMed ID: 17516500 [TBL] [Abstract][Full Text] [Related]
20. A tissue explant system for assessing tendon overuse injury. Devkota AC; Weinhold PS Med Eng Phys; 2005 Nov; 27(9):803-8. PubMed ID: 15876547 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]