These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. Modelling tissue electrophysiology with multiple cell types: applications of the extended bidomain framework. Corrias A; Pathmanathan P; Gavaghan DJ; Buist ML Integr Biol (Camb); 2012 Feb; 4(2):192-201. PubMed ID: 22222297 [TBL] [Abstract][Full Text] [Related]
6. The virtual intestine: in silico modeling of small intestinal electrophysiology and motility and the applications. Du P; Paskaranandavadivel N; Angeli TR; Cheng LK; O'Grady G Wiley Interdiscip Rev Syst Biol Med; 2016; 8(1):69-85. PubMed ID: 26562482 [TBL] [Abstract][Full Text] [Related]
7. Multiscale modeling of gastrointestinal electrophysiology and experimental validation. Du P; O'Grady G; Davidson JB; Cheng LK; Pullan AJ Crit Rev Biomed Eng; 2010; 38(3):225-54. PubMed ID: 21133835 [TBL] [Abstract][Full Text] [Related]
8. Anatomically realistic torso model for studying the relative decay of gastric electrical and magnetic fields. Cheng LK; Buist ML; Pullan AJ Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():3158-61. PubMed ID: 17947011 [TBL] [Abstract][Full Text] [Related]
9. Mapping and modeling gastrointestinal bioelectricity: from engineering bench to bedside. Cheng LK; Du P; O'Grady G Physiology (Bethesda); 2013 Sep; 28(5):310-7. PubMed ID: 23997190 [TBL] [Abstract][Full Text] [Related]
10. Modelling slow wave activity in the small intestine. Lin AS; Buist ML; Smith NP; Pullan AJ J Theor Biol; 2006 Sep; 242(2):356-62. PubMed ID: 16626759 [TBL] [Abstract][Full Text] [Related]
11. Multiscale modelling of human gastric electric activity: can the electrogastrogram detect functional electrical uncoupling? Buist ML; Cheng LK; Sanders KM; Pullan AJ Exp Physiol; 2006 Mar; 91(2):383-90. PubMed ID: 16407476 [TBL] [Abstract][Full Text] [Related]
12. Interstitial cells of Cajal in health and disease. Farrugia G Neurogastroenterol Motil; 2008 May; 20 Suppl 1():54-63. PubMed ID: 18402642 [TBL] [Abstract][Full Text] [Related]
13. A multiscale model of the electrophysiological basis of the human electrogastrogram. Du P; O'Grady G; Cheng LK; Pullan AJ Biophys J; 2010 Nov; 99(9):2784-92. PubMed ID: 21044575 [TBL] [Abstract][Full Text] [Related]
14. Polygonally Meshed Dipole Model Simulation of the Electrical Field Produced by the Stomach and Intestines. Kawano M; Emoto T Comput Math Methods Med; 2020; 2020():2971358. PubMed ID: 33178331 [TBL] [Abstract][Full Text] [Related]
15. A Multiscale Tridomain Model for Simulating Bioelectric Gastric Pacing. Sathar S; Trew ML; OGrady G; Cheng LK IEEE Trans Biomed Eng; 2015 Nov; 62(11):2685-92. PubMed ID: 26080372 [TBL] [Abstract][Full Text] [Related]
16. Tissue specific simulations of interstitial cells of cajal networks using unstructured meshes. Sathar S; Trew ML; Cheng LK Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():8062-5. PubMed ID: 26738164 [TBL] [Abstract][Full Text] [Related]
17. Toward the virtual stomach: progress in multiscale modeling of gastric electrophysiology and motility. Du P; O'Grady G; Gao J; Sathar S; Cheng LK Wiley Interdiscip Rev Syst Biol Med; 2013; 5(4):481-93. PubMed ID: 23463750 [TBL] [Abstract][Full Text] [Related]
18. Gastrointestinal tract modelling in health and disease. Liao DH; Zhao JB; Gregersen H World J Gastroenterol; 2009 Jan; 15(2):169-76. PubMed ID: 19132766 [TBL] [Abstract][Full Text] [Related]
19. The pacemaker functions of visceral interstitial cells of Cajal. Huang X; Xu WX Sheng Li Xue Bao; 2010 Oct; 62(5):387-97. PubMed ID: 20945040 [TBL] [Abstract][Full Text] [Related]
20. A framework for simulating gastric electrical propagation in confocal microscopy derived geometries. Krohn B; Sathar S; Rohrle O; Vanderwinden JM; O'Grady G; Cheng LK Annu Int Conf IEEE Eng Med Biol Soc; 2017 Jul; 2017():4215-4218. PubMed ID: 29060827 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]