BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 17458467)

  • 1. Model for forecasting expressway fine particulate matter and carbon monoxide concentration: application of regression and neural network models.
    Thomas S; Jacko RB
    J Air Waste Manag Assoc; 2007 Apr; 57(4):480-8. PubMed ID: 17458467
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Particulate matter and carbon monoxide multiple regression models using environmental characteristics in a high diesel-use area of Baguio City, Philippines.
    Cassidy BE; Alabanza-Akers MA; Akers TA; Hall DB; Ryan PB; Bayer CW; Naeher LP
    Sci Total Environ; 2007 Aug; 381(1-3):47-58. PubMed ID: 17481696
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development and application of an aerosol screening model for size-resolved urban aerosols.
    Stanier CO; Lee SR;
    Res Rep Health Eff Inst; 2014 Jun; (179):3-79. PubMed ID: 25145039
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The impact of the congestion charging scheme on air quality in London. Part 1. Emissions modeling and analysis of air pollution measurements.
    Kelly F; Anderson HR; Armstrong B; Atkinson R; Barratt B; Beevers S; Derwent D; Green D; Mudway I; Wilkinson P;
    Res Rep Health Eff Inst; 2011 Apr; (155):5-71. PubMed ID: 21830496
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The London low emission zone baseline study.
    Kelly F; Armstrong B; Atkinson R; Anderson HR; Barratt B; Beevers S; Cook D; Green D; Derwent D; Mudway I; Wilkinson P;
    Res Rep Health Eff Inst; 2011 Nov; (163):3-79. PubMed ID: 22315924
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Brooklyn traffic real-time ambient pollutant penetration and environmental dispersion (B-TRAPPED) field study methodology.
    Richmond-Bryant J; Hahn I; Fortune CR; Rodes CE; Portzer JW; Lee S; Wiener RW; Smith LA; Wheeler M; Seagraves J; Stein M; Eisner AD; Brixey LA; Drake-Richman ZE; Brouwer LH; Ellenson WD; Baldauf R
    J Environ Monit; 2009 Dec; 11(12):2122-35. PubMed ID: 20024009
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Artificial neural network models for prediction of daily fine particulate matter concentrations in Algiers.
    Chellali MR; Abderrahim H; Hamou A; Nebatti A; Janovec J
    Environ Sci Pollut Res Int; 2016 Jul; 23(14):14008-17. PubMed ID: 27040548
    [TBL] [Abstract][Full Text] [Related]  

  • 8. PM
    Yang M; Fan H; Zhao K
    Int J Environ Res Public Health; 2019 Nov; 16(22):. PubMed ID: 31739449
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of an empirical model to estimate real-world fine particulate matter emission factors: the traffic air quality model.
    Soliman AS; Jacko RB; Palmer GM
    J Air Waste Manag Assoc; 2006 Nov; 56(11):1540-9. PubMed ID: 17117739
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of a stacked ensemble model for forecasting and analyzing daily average PM
    Zhai B; Chen J
    Sci Total Environ; 2018 Sep; 635():644-658. PubMed ID: 29679837
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Near-roadway monitoring of vehicle emissions as a function of mode of operation for light-duty vehicles.
    Wen D; Zhai W; Xiang S; Hu Z; Wei T; Noll KE
    J Air Waste Manag Assoc; 2017 Nov; 67(11):1229-1239. PubMed ID: 28541795
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of PM2.5, gaseous pollutants, and meteorological interactions in the context of time-series health effects models.
    Ito K; Thurston GD; Silverman RA
    J Expo Sci Environ Epidemiol; 2007 Dec; 17 Suppl 2():S45-60. PubMed ID: 18079764
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of a multiple regression model for the forecasting of the concentrations of NOx and PM10 in Athens and Helsinki.
    Vlachogianni A; Kassomenos P; Karppinen A; Karakitsios S; Kukkonen J
    Sci Total Environ; 2011 Mar; 409(8):1559-71. PubMed ID: 21277004
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Characteristics and influencing factors of air pollution in and out of the highway toll gates].
    Chen KJ; Chen KL; Zhang LJ; Leng GY
    Huan Jing Ke Xue; 2007 Aug; 28(8):1847-53. PubMed ID: 17926422
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluating heterogeneity in indoor and outdoor air pollution using land-use regression and constrained factor analysis.
    Levy JI; Clougherty JE; Baxter LK; Houseman EA; Paciorek CJ;
    Res Rep Health Eff Inst; 2010 Dec; (152):5-80; discussion 81-91. PubMed ID: 21409949
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Operational and environmental determinants of in-vehicle CO and PM2.5 exposure.
    Alameddine I; Abi Esber L; Bou Zeid E; Hatzopoulou M; El-Fadel M
    Sci Total Environ; 2016 May; 551-552():42-50. PubMed ID: 26874759
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Temporal and Spatial Simulation of Atmospheric Pollutant PM2.5 Changes and Risk Assessment of Population Exposure to Pollution Using Optimization Algorithms of the Back Propagation-Artificial Neural Network Model and GIS.
    Zhang P; Hong B; He L; Cheng F; Zhao P; Wei C; Liu Y
    Int J Environ Res Public Health; 2015 Sep; 12(10):12171-95. PubMed ID: 26426030
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Estimating PM2.5 Concentrations in Xi'an City Using a Generalized Additive Model with Multi-Source Monitoring Data.
    Song YZ; Yang HL; Peng JH; Song YR; Sun Q; Li Y
    PLoS One; 2015; 10(11):e0142149. PubMed ID: 26540446
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Application of artificial neural networks on the prediction of surface ozone concentrations].
    Shen LL; Wang YX; Duan L
    Huan Jing Ke Xue; 2011 Aug; 32(8):2231-5. PubMed ID: 22619942
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multiple linear regression and regression with time series error models in forecasting PM
    Ng KY; Awang N
    Environ Monit Assess; 2018 Jan; 190(2):63. PubMed ID: 29306973
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.