These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 17458735)

  • 1. Development and validation of the finite element model for the human lower limb of pedestrians.
    Takahashi Y; Kikuchi Y; Konosu A; Ishikawa H
    Stapp Car Crash J; 2000 Nov; 44():335-55. PubMed ID: 17458735
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Finite Element Model of a Midsize Male for Simulating Pedestrian Accidents.
    Untaroiu CD; Pak W; Meng Y; Schap J; Koya B; Gayzik S
    J Biomech Eng; 2018 Jan; 140(1):. PubMed ID: 28877309
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Finite element analysis of pedestrian lower limb fractures by direct force: the result of being run over or impact?
    Li Z; Zou D; Liu N; Zhong L; Shao Y; Wan L; Huang P; Chen Y
    Forensic Sci Int; 2013 Jun; 229(1-3):43-51. PubMed ID: 23683907
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A detailed finite element model of a mid-sized male for the investigation of traffic pedestrian accidents.
    Grindle D; Pak W; Guleyupoglu B; Koya B; Gayzik FS; Song E; Untaroiu C
    Proc Inst Mech Eng H; 2021 Mar; 235(3):300-313. PubMed ID: 33297871
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A finite element model of a six-year-old child for simulating pedestrian accidents.
    Meng Y; Pak W; Guleyupoglu B; Koya B; Gayzik FS; Untaroiu CD
    Accid Anal Prev; 2017 Jan; 98():206-213. PubMed ID: 27760408
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development and validation of a finite element model of a small female pedestrian.
    Pak W; Meng Y; Schap J; Koya B; Gayzik FS; Untaroiu CD
    Comput Methods Biomech Biomed Engin; 2020 Dec; 23(16):1336-1346. PubMed ID: 32787690
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analysis of the influence of passenger vehicles front-end design on pedestrian lower extremity injuries by means of the LLMS model.
    Scattina A; Mo F; Masson C; Avalle M; Arnoux PJ
    Traffic Inj Prev; 2018 Jul; 19(5):535-541. PubMed ID: 29381438
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A finite element model of the lower limb for simulating pedestrian impacts.
    Untaroiu C; Darvish K; Crandall J; Deng B; Wang JT
    Stapp Car Crash J; 2005 Nov; 49():157-81. PubMed ID: 17096273
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Crash Injury Analysis of Knee Joint Considering Pedestrian Safety.
    M A; Sh S K
    J Biomed Phys Eng; 2019 Oct; 9(5):569-578. PubMed ID: 31750271
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Prediction of pedestrian brain injury due to vehicle impact using computational biomechanics models: Are head-only models sufficient?
    Wang F; Yu C; Wang B; Li G; Miller K; Wittek A
    Traffic Inj Prev; 2020; 21(1):102-107. PubMed ID: 31770038
    [No Abstract]   [Full Text] [Related]  

  • 11. Could an isolated human body lower limb model predict leg biomechanical response of Chinese pedestrians in vehicle collisions?
    Ma H; Mao Z; Li G; Yan L; Mo F
    Acta Bioeng Biomech; 2020; 22(3):117-129. PubMed ID: 33518731
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Coupling lateral bending and shearing mechanisms to define knee injury criteria for pedestrian safety.
    Mo F; Masson C; Cesari D; Arnoux PJ
    Traffic Inj Prev; 2013; 14(4):378-86. PubMed ID: 23531261
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Finite element analysis of knee injury risks in car-to-pedestrian impacts.
    Nagasaka K; Mizuno K; Tanaka E; Yamamoto S; Iwamoto M; Miki K; Kajzer J
    Traffic Inj Prev; 2003 Dec; 4(4):345-54. PubMed ID: 14630583
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Can new passenger cars reduce pedestrian lower extremity injury? A review of geometrical changes of front-end design before and after regulatory efforts.
    Nie B; Zhou Q
    Traffic Inj Prev; 2016 Oct; 17(7):712-9. PubMed ID: 26890318
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Numerical reconstruction of injuries in a real world minivan-to-pedestrian collision.
    Li G; Tan Z; Lv X; Ren L
    Acta Bioeng Biomech; 2019; 21(2):21-30. PubMed ID: 31741474
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The influence of passenger car front shape on pedestrian injury risk observed from German in-depth accident data.
    Li G; Lyons M; Wang B; Yang J; Otte D; Simms C
    Accid Anal Prev; 2017 Apr; 101():11-21. PubMed ID: 28167420
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Validation of a finite element model with six-year-old child anatomical characteristics as specified in Euro NCAP Pedestrian Human Model Certification (TB024).
    Li H; Li K; Huang Y; Lv W; Cui S; He L; Ruan JS; Wang C
    Comput Methods Biomech Biomed Engin; 2021 Jan; 24(1):76-90. PubMed ID: 32875820
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The influence of gait stance on pedestrian lower limb injury risk.
    Li G; Yang J; Simms C
    Accid Anal Prev; 2015 Dec; 85():83-92. PubMed ID: 26397198
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A comparative analysis of the pedestrian injury risk predicted by mechanical impactors and post mortem human surrogates.
    Kerrigan JR; Crandall JR; Deng B
    Stapp Car Crash J; 2008 Nov; 52():527-67. PubMed ID: 19085175
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biofidelity of TRL Legform Impactor and Injury Tolerance of the Human Leg in Lateral Impact.
    Matsui Y
    Stapp Car Crash J; 2001 Nov; 45():495-510. PubMed ID: 17458760
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.