These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 17458759)

  • 1. Lower Limb: Advanced FE Model and New Experimental Data.
    Beillas P; Begeman PC; Yang KH; King AI; Arnoux PJ; Kang HS; Kayvantash K; Brunet C; Cavallero C; Prasad P
    Stapp Car Crash J; 2001 Nov; 45():469-94. PubMed ID: 17458759
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A finite element model of the foot and ankle for automotive impact applications.
    Shin J; Yue N; Untaroiu CD
    Ann Biomed Eng; 2012 Dec; 40(12):2519-31. PubMed ID: 22695987
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Validation of a booted finite element model of the WIAMan ATD lower limb in component and whole-body vertical loading impacts with an assessment of the boot influence model on response.
    Baker WA; Chowdhury MR; Untaroiu CD
    Traffic Inj Prev; 2018 Jul; 19(5):549-554. PubMed ID: 29381394
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of a computationally efficient full human body finite element model.
    Schwartz D; Guleyupoglu B; Koya B; Stitzel JD; Gayzik FS
    Traffic Inj Prev; 2015; 16 Suppl 1():S49-56. PubMed ID: 26027975
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development and Validation of the Total HUman Model for Safety (THUMS) Toward Further Understanding of Occupant Injury Mechanisms in Precrash and During Crash.
    Iwamoto M; Nakahira Y; Kimpara H
    Traffic Inj Prev; 2015; 16 Suppl 1():S36-48. PubMed ID: 26027974
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A finite element model of an anthropomorphic test device lower limb to assess risk of injuries during vertical accelerative loading.
    Baker WA; Chowdhury M; Untaroiu CD
    J Biomech; 2018 Nov; 81():104-112. PubMed ID: 30316546
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gait patterns in children with limb length discrepancy.
    Aiona M; Do KP; Emara K; Dorociak R; Pierce R
    J Pediatr Orthop; 2015; 35(3):280-4. PubMed ID: 25075889
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development and validation of a pedestrian lower limb non-linear 3-d finite element model.
    Schuster PJ; Chou CC; Prasad P; Jayaraman G
    Stapp Car Crash J; 2000 Nov; 44():315-34. PubMed ID: 17458734
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analysis of Foot-Ankle-Leg Injuries in Various Under-Foot Impact Loading Environments With a Human Active Lower Limb Model.
    Huang J; Huang C; Mo F
    J Biomech Eng; 2022 Jan; 144(1):. PubMed ID: 34382656
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development and validation of the finite element model for the human lower limb of pedestrians.
    Takahashi Y; Kikuchi Y; Konosu A; Ishikawa H
    Stapp Car Crash J; 2000 Nov; 44():335-55. PubMed ID: 17458735
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Experimental validation of a finite element model of a human cadaveric tibia.
    Gray HA; Taddei F; Zavatsky AB; Cristofolini L; Gill HS
    J Biomech Eng; 2008 Jun; 130(3):031016. PubMed ID: 18532865
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The influence of personal protection equipment, occupant body size, and restraint system on the frontal impact responses of Hybrid III ATDs in tactical vehicles.
    Zaseck LW; Orton NR; Gruber R; Rupp J; Scherer R; Reed M; Hu J
    Traffic Inj Prev; 2017 Aug; 18(6):642-649. PubMed ID: 28095025
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A numerical investigation on the variation in hip injury tolerance with occupant posture during frontal collisions.
    Yue N; Untaroiu CD
    Traffic Inj Prev; 2014; 15(5):513-22. PubMed ID: 24678575
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of THOR-FLx: A Biofidelic Lower Extremity for Use with 5th Percentile Female Crash Test Dummies.
    Shams T; Beach D; Huang TJ; Rangarajan N; Haffner M
    Stapp Car Crash J; 2002 Nov; 46():267-83. PubMed ID: 17096229
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Numerical Investigations of Interactions between the Knee-Thigh-Hip Complex with Vehicle Interior Structures.
    Kim YS; Choi HH; Cho YN; Park YJ; Lee JB; Yang KH; King AI
    Stapp Car Crash J; 2005 Nov; 49():85-115. PubMed ID: 17096270
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of anti-pronation shoes on lower limb kinematics and kinetics in female runners with pronated feet: The role of physical fatigue.
    Jafarnezhadgero A; Alavi-Mehr SM; Granacher U
    PLoS One; 2019; 14(5):e0216818. PubMed ID: 31086402
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A finite element model of the lower limb for simulating automotive impacts.
    Untaroiu CD; Yue N; Shin J
    Ann Biomed Eng; 2013 Mar; 41(3):513-26. PubMed ID: 23180026
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Active muscle response contributes to increased injury risk of lower extremity in occupant-knee airbag interaction.
    Nie B; Sathyanarayan D; Ye X; Crandall JR; Panzer MB
    Traffic Inj Prev; 2018 Feb; 19(sup1):S76-S82. PubMed ID: 29584491
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A new method to investigate in vivo knee behavior using a finite element model of the lower limb.
    Beillas P; Papaioannou G; Tashman S; Yang KH
    J Biomech; 2004 Jul; 37(7):1019-30. PubMed ID: 15165872
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Coupling lateral bending and shearing mechanisms to define knee injury criteria for pedestrian safety.
    Mo F; Masson C; Cesari D; Arnoux PJ
    Traffic Inj Prev; 2013; 14(4):378-86. PubMed ID: 23531261
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.