BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 17458989)

  • 1. Interfacial water structure controls protein conformation.
    Dér A; Kelemen L; Fábián L; Taneva SG; Fodor E; Páli T; Cupane A; Cacace MG; Ramsden JJ
    J Phys Chem B; 2007 May; 111(19):5344-50. PubMed ID: 17458989
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Crowding and hydration effects on protein conformation: a study with sol-gel encapsulated proteins.
    Eggers DK; Valentine JS
    J Mol Biol; 2001 Dec; 314(4):911-22. PubMed ID: 11734007
    [TBL] [Abstract][Full Text] [Related]  

  • 3. On the Hofmeister effect: fluctuations at the protein-water interface and the surface tension.
    Bogár F; Bartha F; Násztor Z; Fábián L; Leitgeb B; Dér A
    J Phys Chem B; 2014 Jul; 118(29):8496-504. PubMed ID: 24977301
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Can salting-in/salting-out ions be classified as chaotropes/kosmotropes?
    Zangi R
    J Phys Chem B; 2010 Jan; 114(1):643-50. PubMed ID: 19994836
    [TBL] [Abstract][Full Text] [Related]  

  • 5. On the salt-induced stabilization of pair and many-body hydrophobic interactions.
    Ghosh T; Kalra A; Garde S
    J Phys Chem B; 2005 Jan; 109(1):642-51. PubMed ID: 16851057
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hofmeister ions control protein dynamics.
    Szalontai B; Nagy G; Krumova S; Fodor E; Páli T; Taneva SG; Garab G; Peters J; Dér A
    Biochim Biophys Acta; 2013 Oct; 1830(10):4564-72. PubMed ID: 23747299
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interactions of macromolecules with salt ions: an electrostatic theory for the Hofmeister effect.
    Zhou HX
    Proteins; 2005 Oct; 61(1):69-78. PubMed ID: 16044460
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hofmeister effect on the interfacial dynamics of single polymer molecules.
    Yang Q; Zhao J
    Langmuir; 2011 Oct; 27(19):11757-60. PubMed ID: 21877748
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ion-specific weak adsorption of salts and water/octanol transfer free energy of a model amphiphilic hexapeptide.
    Déjugnat C; Dufrêche JF; Zemb T
    Phys Chem Chem Phys; 2011 Apr; 13(15):6914-24. PubMed ID: 21412527
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Kinetic model for salt-induced protein deactivation.
    Broering JM; Bommarius AS
    J Phys Chem B; 2008 Oct; 112(40):12768-75. PubMed ID: 18783192
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The influence of kosmotropic and chaotropic salts on the functional properties of Mucuna pruriens protein isolate.
    Adebowale YA; Adebowale KO
    Int J Biol Macromol; 2007 Jan; 40(2):119-25. PubMed ID: 16875729
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enthalpy-entropy contributions to salt and osmolyte effects on molecular-scale hydrophobic hydration and interactions.
    Athawale MV; Sarupria S; Garde S
    J Phys Chem B; 2008 May; 112(18):5661-70. PubMed ID: 18447346
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analytical shape computation of macromolecules: II. Inaccessible cavities in proteins.
    Liang J; Edelsbrunner H; Fu P; Sudhakar PV; Subramaniam S
    Proteins; 1998 Oct; 33(1):18-29. PubMed ID: 9741841
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hofmeister salt effects on surface tension arise from partitioning of anions and cations between bulk water and the air-water interface.
    Pegram LM; Record MT
    J Phys Chem B; 2007 May; 111(19):5411-7. PubMed ID: 17432897
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hofmeister effect on the interfacial free energy of aliphatic and aromatic surfaces studied by chemical force microscopy.
    Patete J; Petrofsky JM; Stepan J; Waheed A; Serafin JM
    J Phys Chem B; 2009 Jan; 113(2):583-8. PubMed ID: 19090670
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mosaic energy landscapes of liquids and the control of protein conformational dynamics by glass-forming solvents.
    Lubchenko V; Wolynes PG; Frauenfelder H
    J Phys Chem B; 2005 Apr; 109(15):7488-99. PubMed ID: 16851860
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of temperature, pressure, and cosolvents on structural and dynamic properties of the hydration shell of SNase: a molecular dynamics computer simulation study.
    Smolin N; Winter R
    J Phys Chem B; 2008 Jan; 112(3):997-1006. PubMed ID: 18171045
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of Hofmeister effects on the kinetic stability of proteins.
    Broering JM; Bommarius AS
    J Phys Chem B; 2005 Nov; 109(43):20612-9. PubMed ID: 16853668
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thermodynamics, adsorption kinetics and rheology of mixed protein-surfactant interfacial layers.
    Kotsmar C; Pradines V; Alahverdjieva VS; Aksenenko EV; Fainerman VB; Kovalchuk VI; Krägel J; Leser ME; Noskov BA; Miller R
    Adv Colloid Interface Sci; 2009 Aug; 150(1):41-54. PubMed ID: 19493522
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A comparative study of carboxy myoglobin in saccharide-water systems by molecular dynamics simulation.
    Cottone G
    J Phys Chem B; 2007 Apr; 111(13):3563-9. PubMed ID: 17388507
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.