BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 17459323)

  • 1. Reaction mechanisms of 15-hydroperoxyeicosatetraenoic acid catalyzed by human prostacyclin and thromboxane synthases.
    Yeh HC; Tsai AL; Wang LH
    Arch Biochem Biophys; 2007 May; 461(2):159-68. PubMed ID: 17459323
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The N-terminal membrane anchor domain of the membrane-bound prostacyclin synthase involved in the substrate presentation of the coupling reaction with cyclooxygenase.
    Ruan KH; Deng H; Wu J; So SP
    Arch Biochem Biophys; 2005 Mar; 435(2):372-81. PubMed ID: 15708381
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of heme environment and mechanism of peroxide bond cleavage in human prostacyclin synthase.
    Yeh HC; Hsu PY; Wang JS; Tsai AL; Wang LH
    Biochim Biophys Acta; 2005 Dec; 1738(1-3):121-32. PubMed ID: 16406803
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Expression of thromboxane synthase, prostacyclin synthase and thromboxane receptor in atherosclerotic lesions: correlation with plaque composition.
    Cyrus T; Ding T; Praticò D
    Atherosclerosis; 2010 Feb; 208(2):376-81. PubMed ID: 19735918
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Increased 15-HPETE production decreases prostacyclin synthase activity during oxidant stress in aortic endothelial cells.
    Weaver JA; Maddox JF; Cao YZ; Mullarky IK; Sordillo LM
    Free Radic Biol Med; 2001 Feb; 30(3):299-308. PubMed ID: 11165876
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Altered prostanoid metabolism contributes to impaired angiogenesis in persistent pulmonary hypertension in a fetal lamb model.
    Mahajan CN; Afolayan AJ; Eis A; Teng RJ; Konduri GG
    Pediatr Res; 2015 Mar; 77(3):455-62. PubMed ID: 25521916
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of the secondary structure and membrane interaction of the putative membrane anchor domains of prostaglandin I2 synthase and cytochrome P450 2C1.
    Lin Y; Wu KK; Ruan KH
    Arch Biochem Biophys; 1998 Apr; 352(1):78-84. PubMed ID: 9521818
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanism of hydroperoxide reduction by mangano-prostaglandin endoperoxide synthase.
    Landino LM; Marnett LJ
    Biochemistry; 1996 Feb; 35(8):2637-43. PubMed ID: 8611568
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Purification and characterization of recombinant human prostacyclin synthase.
    Wada M; Yokoyama C; Hatae T; Shimonishi M; Nakamura M; Imai Y; Ullrich V; Tanabe T
    J Biochem; 2004 Apr; 135(4):455-63. PubMed ID: 15115769
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Double-label expression studies of prostacyclin synthase, thromboxane synthase and COX isoforms in normal aortic endothelium.
    Kawka DW; Ouellet M; Hétu PO; Singer II; Riendeau D
    Biochim Biophys Acta; 2007 Jan; 1771(1):45-54. PubMed ID: 17189713
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rabbit aorta converts 15-HPETE to trihydroxyeicosatrienoic acids: potential role of cytochrome P450.
    Pfister SL; Spitzbarth N; Zeldin DC; Lafite P; Mansuy D; Campbell WB
    Arch Biochem Biophys; 2003 Dec; 420(1):142-52. PubMed ID: 14622984
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cytochrome P450-dependent transformations of 15R- and 15S-hydroperoxyeicosatetraenoic acids: stereoselective formation of epoxy alcohol products.
    Chang MS; Boeglin WE; Guengerich FP; Brash AR
    Biochemistry; 1996 Jan; 35(2):464-71. PubMed ID: 8555216
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Homology Modeling and Molecular Dynamics Simulation Combined with X-ray Solution Scattering Defining Protein Structures of Thromboxane and Prostacyclin Synthases.
    Yang HC; Yang CH; Huang MY; Lu JF; Wang JS; Yeh YQ; Jeng US
    J Phys Chem B; 2017 Dec; 121(50):11229-11240. PubMed ID: 29168638
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Qualitative and quantitative analysis of lipoxygenase products in bovine corneal epithelium by liquid chromatography-mass spectrometry with an ion trap.
    Liminga M; Oliw E
    Lipids; 2000 Feb; 35(2):225-32. PubMed ID: 10757554
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Suggested mechanism for the formation of 15-hydroxyeicosatrienoic acid by rat epidermal microsomes.
    Van Wauwe J; Coene MC; Van Nyen G; Cools W; Le Jeune L; Lauwers W
    Eicosanoids; 1992; 5(3-4):141-6. PubMed ID: 1292524
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of prostacyclin synthase in carcinogenesis.
    Sasaki Y; Ochiai T; Takamura M; Kondo Y; Yokoyama C; Hara S
    Prostaglandins Other Lipid Mediat; 2017 Nov; 133():49-52. PubMed ID: 28506876
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An active triple-catalytic hybrid enzyme engineered by linking cyclo-oxygenase isoform-1 to prostacyclin synthase that can constantly biosynthesize prostacyclin, the vascular protector.
    Ruan KH; So SP; Cervantes V; Wu H; Wijaya C; Jentzen RR
    FEBS J; 2008 Dec; 275(23):5820-9. PubMed ID: 19021758
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Depletion of iNOS-derived nitric oxide by prostaglandin H synthase-2 in inflammation-activated J774.2 macrophages through lipohydroperoxidase turnover.
    Clark SR; Anning PB; Coffey MJ; Roberts AG; Marnett LJ; O'Donnell VB
    Biochem J; 2005 Feb; 385(Pt 3):815-21. PubMed ID: 15461587
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Human thioredoxin reductase directly reduces lipid hydroperoxides by NADPH and selenocystine strongly stimulates the reaction via catalytically generated selenols.
    Björnstedt M; Hamberg M; Kumar S; Xue J; Holmgren A
    J Biol Chem; 1995 May; 270(20):11761-4. PubMed ID: 7744824
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Substrate binding is the rate-limiting step in thromboxane synthase catalysis.
    Wang LH; Tsai AL; Hsu PY
    J Biol Chem; 2001 May; 276(18):14737-43. PubMed ID: 11297515
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.