These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
155 related articles for article (PubMed ID: 17459324)
1. Inactivation of cysteine and serine proteases by singlet oxygen. Suto D; Iuchi Y; Ikeda Y; Sato K; Ohba Y; Fujii J Arch Biochem Biophys; 2007 May; 461(2):151-8. PubMed ID: 17459324 [TBL] [Abstract][Full Text] [Related]
2. Chemistry and biology of the aeruginosin family of serine protease inhibitors. Ersmark K; Del Valle JR; Hanessian S Angew Chem Int Ed Engl; 2008; 47(7):1202-23. PubMed ID: 18076006 [TBL] [Abstract][Full Text] [Related]
3. Natural polyprenylated benzophenones inhibiting cysteine and serine proteases. Martins FT; Assis DM; Dos Santos MH; Camps I; Veloso MP; Juliano MA; Alves LC; Doriguetto AC Eur J Med Chem; 2009 Mar; 44(3):1230-9. PubMed ID: 18995931 [TBL] [Abstract][Full Text] [Related]
4. Theoretical evaluation of a model of the catalytic triads of serine and cysteine proteases by ab initio molecular orbital calculation. Nishihira J; Tachikawa H J Theor Biol; 1999 Feb; 196(4):513-9. PubMed ID: 10036203 [TBL] [Abstract][Full Text] [Related]
6. Design, synthesis, and discovery of novel non-peptide inhibitor of Caspase-3 using ligand based and structure based virtual screening approach. Lakshmi PJ; Kumar BV; Nayana RS; Mohan MS; Bolligarla R; Das SK; Bhanu MU; Kondapi AK; Ravikumar M Bioorg Med Chem; 2009 Aug; 17(16):6040-7. PubMed ID: 19631549 [TBL] [Abstract][Full Text] [Related]
7. Effect of protease inhibitors on exflagellation in Plasmodium falciparum. Rupp I; Bosse R; Schirmeister T; Pradel G Mol Biochem Parasitol; 2008 Apr; 158(2):208-12. PubMed ID: 18243365 [TBL] [Abstract][Full Text] [Related]
8. Organic azide inhibitors of cysteine proteases. Le GT; Abbenante G; Madala PK; Hoang HN; Fairlie DP J Am Chem Soc; 2006 Sep; 128(38):12396-7. PubMed ID: 16984172 [TBL] [Abstract][Full Text] [Related]
9. Singlet-oxygen-mediated amino acid and protein oxidation: formation of tryptophan peroxides and decomposition products. Gracanin M; Hawkins CL; Pattison DI; Davies MJ Free Radic Biol Med; 2009 Jul; 47(1):92-102. PubMed ID: 19375501 [TBL] [Abstract][Full Text] [Related]
10. Singlet oxygen's response to protein dynamics. Jensen RL; Arnbjerg J; Birkedal H; Ogilby PR J Am Chem Soc; 2011 May; 133(18):7166-73. PubMed ID: 21491861 [TBL] [Abstract][Full Text] [Related]
11. Screening of the active site from water by the incoming ligand triggers catalysis and inhibition in serine proteases. Shokhen M; Khazanov N; Albeck A Proteins; 2008 Mar; 70(4):1578-87. PubMed ID: 17912756 [TBL] [Abstract][Full Text] [Related]
12. Midgut cysteine protease-inhibiting activity in Trichoplusia ni protects the peritrophic membrane from degradation by plant cysteine proteases. Li C; Song X; Li G; Wang P Insect Biochem Mol Biol; 2009 Oct; 39(10):726-34. PubMed ID: 19729065 [TBL] [Abstract][Full Text] [Related]
13. Reaction of singlet oxygen with tryptophan in proteins: a pronounced effect of the local environment on the reaction rate. Jensen RL; Arnbjerg J; Ogilby PR J Am Chem Soc; 2012 Jun; 134(23):9820-6. PubMed ID: 22594303 [TBL] [Abstract][Full Text] [Related]
14. Theoretical studies about the influence of different ring substituents on the nucleophilic ring opening of three-membered heterocycles and possible implications for the mechanisms of cysteine protease inhibitors. Helten H; Schirmeister T; Engels B J Org Chem; 2005 Jan; 70(1):233-7. PubMed ID: 15624927 [TBL] [Abstract][Full Text] [Related]
15. Using singlet oxygen to synthesize polyoxygenated natural products from furans. Montagnon T; Tofi M; Vassilikogiannakis G Acc Chem Res; 2008 Aug; 41(8):1001-11. PubMed ID: 18605738 [TBL] [Abstract][Full Text] [Related]
16. Dimethylthiazolidine carboxylic acid as a rigid p3 unit in inhibitors of serine proteases: application to two targets. Kawai SH; Aubry N; Duceppe JS; LlinĂ s-Brunet M; LaPlante SR Chem Biol Drug Des; 2009 Nov; 74(5):517-22. PubMed ID: 19780760 [TBL] [Abstract][Full Text] [Related]
17. The Bsmoc group as a novel scaffold for the design of irreversible inhibitors of cysteine proteases. Iley J; Moreira R; Martins L; Guedes RC; Soares CM Bioorg Med Chem Lett; 2006 May; 16(10):2738-41. PubMed ID: 16503139 [TBL] [Abstract][Full Text] [Related]
18. Does the DNA binding mode of a molecule affect its ability to interact with singlet oxygen? Lau V; Heyne B Photochem Photobiol; 2009; 85(5):1110-5. PubMed ID: 19508641 [TBL] [Abstract][Full Text] [Related]
19. Rational design of improved aziridine-based inhibitors of cysteine proteases. Buback V; Mladenovic M; Engels B; Schirmeister T J Phys Chem B; 2009 Apr; 113(15):5282-9. PubMed ID: 19301885 [TBL] [Abstract][Full Text] [Related]
20. Solid-phase synthesis of azidomethylene inhibitors targeting cysteine proteases. Yang PY; Wu H; Lee MY; Xu A; Srinivasan R; Yao SQ Org Lett; 2008 May; 10(10):1881-4. PubMed ID: 18407644 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]