BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

407 related articles for article (PubMed ID: 17459382)

  • 1. Na+ transport in plants.
    Apse MP; Blumwald E
    FEBS Lett; 2007 May; 581(12):2247-54. PubMed ID: 17459382
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Na+ transporter AtHKT1;1 controls retrieval of Na+ from the xylem in Arabidopsis.
    Davenport RJ; Muñoz-Mayor A; Jha D; Essah PA; Rus A; Tester M
    Plant Cell Environ; 2007 Apr; 30(4):497-507. PubMed ID: 17324235
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Na(+) transport in glycophytic plants: what we know and would like to know.
    Craig Plett D; Møller IS
    Plant Cell Environ; 2010 Apr; 33(4):612-26. PubMed ID: 19968828
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Correlations in concentrations, xylem and phloem flows, and partitioning of elements and ions in intact plants. A summary and statistical re-evaluation of modelling experiments in Ricinus communis.
    Peuke AD
    J Exp Bot; 2010 Mar; 61(3):635-55. PubMed ID: 20032109
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cell-specific localization of Na+ in roots of durum wheat and possible control points for salt exclusion.
    Läuchli A; James RA; Huang CX; McCully M; Munns R
    Plant Cell Environ; 2008 Nov; 31(11):1565-74. PubMed ID: 18702634
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cation currents in protoplasts from the roots of a Na+ hyperaccumulating mutant of Capsicum annuum.
    Murthy M; Tester M
    J Exp Bot; 2006; 57(5):1171-80. PubMed ID: 16510515
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Futile cycling at the plasma membrane: a hallmark of low-affinity nutrient transport.
    Britto DT; Kronzucker HJ
    Trends Plant Sci; 2006 Nov; 11(11):529-34. PubMed ID: 17035071
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-affinity potassium and sodium transport systems in plants.
    Rodríguez-Navarro A; Rubio F
    J Exp Bot; 2006; 57(5):1149-60. PubMed ID: 16449373
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Uptake and transport of calcium in plants.
    Yang HQ; Jie YL
    Zhi Wu Sheng Li Yu Fen Zi Sheng Wu Xue Xue Bao; 2005 Jun; 31(3):227-34. PubMed ID: 15961895
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sodium transport in plants: a critical review.
    Kronzucker HJ; Britto DT
    New Phytol; 2011 Jan; 189(1):54-81. PubMed ID: 21118256
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sequential depolarization of root cortical and stelar cells induced by an acute salt shock - implications for Na(+) and K(+) transport into xylem vessels.
    Wegner LH; Stefano G; Shabala L; Rossi M; Mancuso S; Shabala S
    Plant Cell Environ; 2011 May; 34(5):859-69. PubMed ID: 21332511
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The use of microelectrodes to investigate compartmentation and the transport of metabolized inorganic ions in plants.
    Miller AJ; Cookson SJ; Smith SJ; Wells DM
    J Exp Bot; 2001 Apr; 52(356):541-9. PubMed ID: 11373303
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mining iron: iron uptake and transport in plants.
    Kim SA; Guerinot ML
    FEBS Lett; 2007 May; 581(12):2273-80. PubMed ID: 17485078
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Integrative Control Between Proton Pumps and SOS1 Antiporters in Roots is Crucial for Maintaining Low Na+ Accumulation and Salt Tolerance in Ammonium-Supplied Sorghum bicolor.
    Miranda RS; Mesquita RO; Costa JH; Alvarez-Pizarro JC; Prisco JT; Gomes-Filho E
    Plant Cell Physiol; 2017 Mar; 58(3):522-536. PubMed ID: 28158828
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Potassium transporters in plants--involvement in K+ acquisition, redistribution and homeostasis.
    Gierth M; Mäser P
    FEBS Lett; 2007 May; 581(12):2348-56. PubMed ID: 17397836
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanisms of Sodium Transport in Plants-Progresses and Challenges.
    Keisham M; Mukherjee S; Bhatla SC
    Int J Mol Sci; 2018 Feb; 19(3):. PubMed ID: 29495332
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rice OsHKT2;1 transporter mediates large Na+ influx component into K+-starved roots for growth.
    Horie T; Costa A; Kim TH; Han MJ; Horie R; Leung HY; Miyao A; Hirochika H; An G; Schroeder JI
    EMBO J; 2007 Jun; 26(12):3003-14. PubMed ID: 17541409
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Puccinellia tenuiflora maintains a low Na+ level under salinity by limiting unidirectional Na+ influx resulting in a high selectivity for K+ over Na+.
    Wang CM; Zhang JL; Liu XS; Li Z; Wu GQ; Cai JY; Flowers TJ; Wang SM
    Plant Cell Environ; 2009 May; 32(5):486-96. PubMed ID: 19183292
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrical signalling and cytokinins mediate effects of light and root cutting on ion uptake in intact plants.
    Shabala S; Pang J; Zhou M; Shabala L; Cuin TA; Nick P; Wegner LH
    Plant Cell Environ; 2009 Feb; 32(2):194-207. PubMed ID: 19021884
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Overexpression of a new rice vacuolar antiporter regulating protein OsARP improves salt tolerance in tobacco.
    Uddin MI; Qi Y; Yamada S; Shibuya I; Deng XP; Kwak SS; Kaminaka H; Tanaka K
    Plant Cell Physiol; 2008 Jun; 49(6):880-90. PubMed ID: 18420595
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.