These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 17459708)

  • 1. The energetics of human walking: is Froude number (Fr) useful for metabolic comparisons?
    Kramer PA; Sarton-Miller I
    Gait Posture; 2008 Feb; 27(2):209-15. PubMed ID: 17459708
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Froude number fractions to increase walking pattern dynamic similarities: application to plantar pressure study in healthy subjects.
    Moretto P; Bisiaux M; Lafortune MA
    Gait Posture; 2007 Jan; 25(1):40-8. PubMed ID: 16434196
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optimal walking speed following changes in limb geometry.
    Leurs F; Ivanenko YP; Bengoetxea A; Cebolla AM; Dan B; Lacquaniti F; Cheron GA
    J Exp Biol; 2011 Jul; 214(Pt 13):2276-82. PubMed ID: 21653821
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The energetic costs of trunk and distal-limb loading during walking and running in guinea fowl Numida meleagris: I. Organismal metabolism and biomechanics.
    Marsh RL; Ellerby DJ; Henry HT; Rubenson J
    J Exp Biol; 2006 Jun; 209(Pt 11):2050-63. PubMed ID: 16709908
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The mass-specific energy cost of human walking is set by stature.
    Weyand PG; Smith BR; Puyau MR; Butte NF
    J Exp Biol; 2010 Dec; 213(Pt 23):3972-9. PubMed ID: 21075938
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effect of lower limb length on the energetic cost of locomotion: implications for fossil hominins.
    Steudel-Numbers KL; Tilkens MJ
    J Hum Evol; 2004; 47(1-2):95-109. PubMed ID: 15288526
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effect on energy expenditure of walking on gradients or carrying burdens.
    Kramer PA
    Am J Hum Biol; 2010; 22(4):497-507. PubMed ID: 20127728
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanical energy in toddler gait. A trade-off between economy and stability?
    Hallemans A; Aerts P; Otten B; De Deyn PP; De Clercq D
    J Exp Biol; 2004 Jun; 207(Pt 14):2417-31. PubMed ID: 15184514
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Froude number corrections in anthropological studies.
    Steudel-Numbers K; Weaver TD
    Am J Phys Anthropol; 2006 Sep; 131(1):27-32. PubMed ID: 16485296
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparing two devices of suspended treadmill walking by varying body unloading and Froude number.
    Ruckstuhl H; Kho J; Weed M; Wilkinson MW; Hargens AR
    Gait Posture; 2009 Nov; 30(4):446-51. PubMed ID: 19674901
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The energy cost for the step-to-step transition in amputee walking.
    Houdijk H; Pollmann E; Groenewold M; Wiggerts H; Polomski W
    Gait Posture; 2009 Jul; 30(1):35-40. PubMed ID: 19321343
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metabolic cost, mechanical work, and efficiency during walking in young and older men.
    Mian OS; Thom JM; Ardigò LP; Narici MV; Minetti AE
    Acta Physiol (Oxf); 2006 Feb; 186(2):127-39. PubMed ID: 16497190
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The prediction of metabolic energy expenditure during gait from mechanical energy of the limb: a preliminary study.
    Foerster SA; Bagley AM; Mote CD; Skinner HB
    J Rehabil Res Dev; 1995 May; 32(2):128-34. PubMed ID: 7562652
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of pendulum mechanism and kinematic coordination from the first unsupported steps in toddlers.
    Ivanenko YP; Dominici N; Cappellini G; Dan B; Cheron G; Lacquaniti F
    J Exp Biol; 2004 Oct; 207(Pt 21):3797-810. PubMed ID: 15371487
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Powered ankle exoskeletons reveal the metabolic cost of plantar flexor mechanical work during walking with longer steps at constant step frequency.
    Sawicki GS; Ferris DP
    J Exp Biol; 2009 Jan; 212(Pt 1):21-31. PubMed ID: 19088207
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Energetics in Homo erectus and other early hominins: the consequences of increased lower-limb length.
    Steudel-Numbers KL
    J Hum Evol; 2006 Nov; 51(5):445-53. PubMed ID: 16780923
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanics and energetics of level walking with powered ankle exoskeletons.
    Sawicki GS; Ferris DP
    J Exp Biol; 2008 May; 211(Pt 9):1402-13. PubMed ID: 18424674
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of Down syndrome on three-dimensional motion during walking at different speeds.
    Agiovlasitis S; McCubbin JA; Yun J; Mpitsos G; Pavol MJ
    Gait Posture; 2009 Oct; 30(3):345-50. PubMed ID: 19595593
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Predicting the energy cost of terrestrial locomotion: a test of the LiMb model in humans and quadrupeds.
    Pontzer H
    J Exp Biol; 2007 Feb; 210(Pt 3):484-94. PubMed ID: 17234618
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Why not walk faster?
    Usherwood JR
    Biol Lett; 2005 Sep; 1(3):338-41. PubMed ID: 17148201
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.