These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 17459715)

  • 1. Thermal neutron diffusion cooling in wet quartz (Monte Carlo simulations of the pulsed neutron experiments).
    Drozdowicz K; Krynicka E; Dabrowska J
    Appl Radiat Isot; 2007 Jul; 65(7):877-82. PubMed ID: 17459715
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Variation of the thermal neutron diffusion cooling properties of wet rock material (Monte Carlo simulations of the pulsed neutron experiments).
    Drozdowicz K; Krynicka E; Dabrowska J
    Appl Radiat Isot; 2005 Mar; 62(3):509-16. PubMed ID: 15607929
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Diffusion cooling of thermal neutrons in basic rock minerals by Monte Carlo simulation of the pulsed neutron experiments.
    Drozdowicz K; Krynicka E; Dabrowska J
    Appl Radiat Isot; 2003 Jun; 58(6):727-33. PubMed ID: 12798385
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Neutron stimulated emission computed tomography: a Monte Carlo simulation approach.
    Sharma AC; Harrawood BP; Bender JE; Tourassi GD; Kapadia AJ
    Phys Med Biol; 2007 Oct; 52(20):6117-31. PubMed ID: 17921575
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Design of a new IRSN thermal neutron field facility using Monte-Carlo simulations.
    Lacoste V
    Radiat Prot Dosimetry; 2007; 126(1-4):58-63. PubMed ID: 17578877
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Monte Carlo simulation of scattered and thermal photoneutron fluences inside a radiotherapy room.
    Facure A; Da Silva AX; Falcão RC
    Radiat Prot Dosimetry; 2007; 123(1):56-61. PubMed ID: 16815885
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Diffusion of water in clays on the microscopic scale: modeling and experiment.
    Malikova N; Cadène A; Marry V; Dubois E; Turq P
    J Phys Chem B; 2006 Feb; 110(7):3206-14. PubMed ID: 16494330
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multiple "time step" Monte Carlo simulations: application to charged systems with Ewald summation.
    Bernacki K; Hetenyi B; Berne BJ
    J Chem Phys; 2004 Jul; 121(1):44-50. PubMed ID: 15260521
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Monte Carlo simulations for the study of drug release from matrices with high and low diffusivity areas.
    Kosmidis K; Macheras P
    Int J Pharm; 2007 Oct; 343(1-2):166-72. PubMed ID: 17590294
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Monte Carlo simulation of the response of ESR dosimeters added with gadolinium exposed to thermal, epithermal and fast neutrons.
    Marrale M; Basile S; Brai M; Longo A
    Appl Radiat Isot; 2009 Jul; 67(7-8 Suppl):S186-9. PubMed ID: 19380235
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Monte Carlo simulations to advance characterisation of landmines by pulsed fast/thermal neutron analysis.
    Maucec M; Rigollet C
    Appl Radiat Isot; 2004 Jul; 61(1):35-42. PubMed ID: 15145436
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transport processes at alpha-quartz-water interfaces: insights from first-principles molecular dynamics simulations.
    Adeagbo WA; Doltsinis NL; Klevakina K; Renner J
    Chemphyschem; 2008 May; 9(7):994-1002. PubMed ID: 18404743
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Application of the diffusion Monte Carlo method to the binding of excess electrons to water clusters.
    Xu J; Jordan KD
    J Phys Chem A; 2010 Jan; 114(3):1364-6. PubMed ID: 19788288
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhancement of neutron radiation dose by the addition of sulphur-33 atoms.
    Porras I
    Phys Med Biol; 2008 Apr; 53(7):L1-9. PubMed ID: 18356577
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Surface enrichment of proteins at quartz/water interfaces: a neutron reflectivity study.
    Forciniti D; Hamilton WA
    J Colloid Interface Sci; 2005 May; 285(2):458-68. PubMed ID: 15837460
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Monte-Carlo calculations of particle fluences and neutron effective dose rates in the atmosphere.
    Matthiä D; Sihver L; Meier M
    Radiat Prot Dosimetry; 2008; 131(2):222-8. PubMed ID: 18448435
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Photoneutron production of a Siemens Primus linear accelerator studied by Monte Carlo methods and a paired magnesium and boron coated magnesium ionization chamber system.
    Becker J; Brunckhorst E; Schmidt R
    Phys Med Biol; 2007 Nov; 52(21):6375-87. PubMed ID: 17951849
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Monte-Carlo simulations of elastically backscattered neutrons from hidden explosives using three different neutron sources.
    Elagib I; Elsheikh N; Alsewaidan H; Habbani F
    Appl Radiat Isot; 2009 Jan; 67(1):39-45. PubMed ID: 18823788
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modelling radionuclide transport for time varying flow in a channel network.
    Moreno L; Crawford J; Neretnieks I
    J Contam Hydrol; 2006 Aug; 86(3-4):215-38. PubMed ID: 16716450
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Monte Carlo simulations for external neutron dosimetry based on the visible Chinese human phantom.
    Zhang G; Liu Q; Luo Q
    Phys Med Biol; 2007 Dec; 52(24):7367-83. PubMed ID: 18065844
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.