These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 17459731)

  • 41. Timing of rhythmic movements in patients with cerebellar degeneration.
    Schlerf JE; Spencer RM; Zelaznik HN; Ivry RB
    Cerebellum; 2007; 6(3):221-31. PubMed ID: 17786818
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Distinct timing mechanisms produce discrete and continuous movements.
    Huys R; Studenka BE; Rheaume NL; Zelaznik HN; Jirsa VK
    PLoS Comput Biol; 2008 Apr; 4(4):e1000061. PubMed ID: 18437236
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Long-term training affects cerebellar processing in skilled keyboard players.
    Koeneke S; Lutz K; Wüstenberg T; Jäncke L
    Neuroreport; 2004 Jun; 15(8):1279-82. PubMed ID: 15167549
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Activation of cortical and cerebellar motor areas during executed and imagined hand movements: an fMRI study.
    Lotze M; Montoya P; Erb M; Hülsmann E; Flor H; Klose U; Birbaumer N; Grodd W
    J Cogn Neurosci; 1999 Sep; 11(5):491-501. PubMed ID: 10511638
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Impaired prehension is associated with lesions of the superior and inferior hand representation within the human cerebellum.
    Küper M; Brandauer B; Thürling M; Schoch B; Gizewski ER; Timmann D; Hermsdörfer J
    J Neurophysiol; 2011 May; 105(5):2018-29. PubMed ID: 21325683
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Motor control in basal ganglia circuits using fMRI and brain atlas approaches.
    Lehéricy S; Bardinet E; Tremblay L; Van de Moortele PF; Pochon JB; Dormont D; Kim DS; Yelnik J; Ugurbil K
    Cereb Cortex; 2006 Feb; 16(2):149-61. PubMed ID: 15858164
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Cortical areas functionally linked with the cerebellar second homunculus during out-of-phase bimanual movements.
    Habas C; Cabanis EA
    Neuroradiology; 2006 Apr; 48(4):273-9. PubMed ID: 16465531
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Asymmetric control mechanisms of bimanual coordination: an application of directed connectivity analysis to kinematic and functional MRI data.
    Maki Y; Wong KF; Sugiura M; Ozaki T; Sadato N
    Neuroimage; 2008 Oct; 42(4):1295-304. PubMed ID: 18674627
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Neural correlates of simple unimanual discrete and continuous movements: a functional imaging study at 3 T.
    Habas C; Cabanis EA
    Neuroradiology; 2008 Apr; 50(4):367-75. PubMed ID: 18172628
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Mesial motor areas in self-initiated versus externally triggered movements examined with fMRI: effect of movement type and rate.
    Deiber MP; Honda M; Ibañez V; Sadato N; Hallett M
    J Neurophysiol; 1999 Jun; 81(6):3065-77. PubMed ID: 10368421
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Whole-body somatotopic maps in the cerebellum revealed with 7T fMRI.
    Boillat Y; Bazin PL; van der Zwaag W
    Neuroimage; 2020 May; 211():116624. PubMed ID: 32058002
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Central representation of dynamics when manipulating handheld objects.
    Milner TE; Franklin DW; Imamizu H; Kawato M
    J Neurophysiol; 2006 Feb; 95(2):893-901. PubMed ID: 16251266
    [TBL] [Abstract][Full Text] [Related]  

  • 53. fMRI at 7 T: whole-brain coverage and signal advantages even infratentorially?
    Gizewski ER; de Greiff A; Maderwald S; Timmann D; Forsting M; Ladd ME
    Neuroimage; 2007 Sep; 37(3):761-8. PubMed ID: 17644414
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Reversal of Practice-related Effects on Corticospinal Excitability has no Immediate Effect on Behavioral Outcome.
    Bologna M; Rocchi L; Paparella G; Nardella A; Li Voti P; Conte A; Kojovic M; Rothwell JC; Berardelli A
    Brain Stimul; 2015; 8(3):603-12. PubMed ID: 25697591
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Spatiotemporal mapping of cortical activity accompanying voluntary movements using an event-related beamforming approach.
    Cheyne D; Bakhtazad L; Gaetz W
    Hum Brain Mapp; 2006 Mar; 27(3):213-29. PubMed ID: 16037985
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Functional magnetic resonance imaging study comparing rhythmic finger tapping in children and adults.
    De Guio F; Jacobson SW; Molteno CD; Jacobson JL; Meintjes EM
    Pediatr Neurol; 2012 Feb; 46(2):94-100. PubMed ID: 22264703
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Increased variability of paced finger tapping accuracy following repetitive magnetic stimulation of the cerebellum in humans.
    Théoret H; Haque J; Pascual-Leone A
    Neurosci Lett; 2001 Jun; 306(1-2):29-32. PubMed ID: 11403950
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Intracerebral ERD/ERS in voluntary movement and in cognitive visuomotor task.
    Rektor I; Sochůrková D; Bocková M
    Prog Brain Res; 2006; 159():311-30. PubMed ID: 17071240
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Involvement of area MT in bimanual finger movements in left-handers: an fMRI study.
    Müller K; Kleiser R; Mechsner F; Seitz RJ
    Eur J Neurosci; 2011 Oct; 34(8):1301-9. PubMed ID: 21933287
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Neural systems underlying observation of humanly impossible movements: an FMRI study.
    Costantini M; Galati G; Ferretti A; Caulo M; Tartaro A; Romani GL; Aglioti SM
    Cereb Cortex; 2005 Nov; 15(11):1761-7. PubMed ID: 15728741
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.