These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 17459879)

  • 21. IL-10 converts human dendritic cells into macrophage-like cells with increased antibacterial activity against virulent Mycobacterium tuberculosis.
    Förtsch D; Röllinghoff M; Stenger S
    J Immunol; 2000 Jul; 165(2):978-87. PubMed ID: 10878374
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Complex encounters at the macrophage-mycobacterium interface: studies on the role of the mannose receptor and CD14 in experimental infection models with Mycobacterium avium.
    Reiling N; Klug K; Krallmann-Wenzel U; Laves R; Goyert S; Taylor ME; Lindhorst TK; Ehlers S
    Immunobiology; 2001 Dec; 204(5):558-71. PubMed ID: 11846219
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Pathogenesis of Mycobacterium avium infection: typical responses to an atypical mycobacterium?
    Appelberg R
    Immunol Res; 2006; 35(3):179-90. PubMed ID: 17172645
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Improved clearance of Mycobacterium avium upon disruption of the inducible nitric oxide synthase gene.
    Gomes MS; Flórido M; Pais TF; Appelberg R
    J Immunol; 1999 Jun; 162(11):6734-9. PubMed ID: 10352292
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Role of CD40 ligand in Mycobacterium avium infection.
    Hayashi T; Rao SP; Meylan PR; Kornbluth RS; Catanzaro A
    Infect Immun; 1999 Jul; 67(7):3558-65. PubMed ID: 10377139
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Recombinant tumour necrosis factor-alpha decreases whereas recombinant interleukin-6 increases growth of a virulent strain of Mycobacterium avium in human macrophages.
    Denis M; Gregg EO
    Immunology; 1990 Sep; 71(1):139-41. PubMed ID: 2120128
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Comparative profiles of intramacrophage behavior of Mycobacterium tuberculosis and Mycobacterium avium complex with different levels of virulence.
    Sano K; Sato K; Sano C; Shimizu T; Tomioka H
    Microbiol Immunol; 2002; 46(7):483-6. PubMed ID: 12222934
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Engagement of Toll-like receptor 2 in mouse macrophages infected with Mycobacterium avium induces non-oxidative and TNF-independent anti-mycobacterial activity.
    Gomes MS; Sousa Fernandes S; Cordeiro JV; Silva Gomes S; Vieira A; Appelberg R
    Eur J Immunol; 2008 Aug; 38(8):2180-9. PubMed ID: 18624355
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Immunopathogenesis of Mycobacterium avium infection.
    Cooper AM; Appelberg R; Orme IM
    Front Biosci; 1998 Aug; 3():e141-8. PubMed ID: 9693155
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Mycobacterium avium subspecies impair dendritic cell maturation.
    Basler T; Brumshagen C; Beineke A; Goethe R; Bäumer W
    Innate Immun; 2013 Oct; 19(5):451-61. PubMed ID: 23283733
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Environmental strains of Mycobacterium avium interfere with immune responses associated with Mycobacterium bovis BCG vaccination.
    Young SL; Slobbe L; Wilson R; Buddle BM; de Lisle GW; Buchan GS
    Infect Immun; 2007 Jun; 75(6):2833-40. PubMed ID: 17371857
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Modulation of Mycobacterium avium growth in vivo by cytokines: involvement of tumour necrosis factor in resistance to atypical mycobacteria.
    Denis M
    Clin Exp Immunol; 1991 Mar; 83(3):466-71. PubMed ID: 1900745
    [TBL] [Abstract][Full Text] [Related]  

  • 33. In vivo modulation of atypical mycobacterial infection: adjuvant therapy increases resistance to Mycobacterium avium by enhancing macrophage effector functions.
    Denis M
    Cell Immunol; 1991 Apr; 134(1):42-53. PubMed ID: 2013106
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Mycobacterium avium MAV2054 protein induces macrophage apoptosis by targeting mitochondria and reduces intracellular bacterial growth.
    Lee KI; Whang J; Choi HG; Son YJ; Jeon HS; Back YW; Park HS; Paik S; Park JK; Choi CH; Kim HJ
    Sci Rep; 2016 Nov; 6():37804. PubMed ID: 27901051
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Sequential patterns of gene expression by bovine monocyte-derived macrophages associated with ingestion of mycobacterial organisms.
    Weiss DJ; Evanson OA; Deng M; Abrahamsen MS
    Microb Pathog; 2004 Oct; 37(4):215-24. PubMed ID: 15458782
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Observed differences in virulence-associated phenotypes between a human clinical isolate and a veterinary isolate of Mycobacterium avium.
    Birkness KA; Swords WE; Huang PH; White EH; Dezzutti CS; Lal RB; Quinn FD
    Infect Immun; 1999 Sep; 67(9):4895-901. PubMed ID: 10456946
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Polysaccharide structural variability in mycobacteria: identification and characterization of phosphorylated mannan and arabinomannan.
    Maes E; Coddeville B; Kremer L; Guérardel Y
    Glycoconj J; 2007 Nov; 24(8):439-48. PubMed ID: 17510794
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The relative impact of bacterial virulence and host genetic background on cytokine expression during Mycobacterium avium infection of mice.
    Castro AG; Minóprio P; Appelberg R
    Immunology; 1995 Aug; 85(4):556-61. PubMed ID: 7558149
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effect of ethanol on the interaction between the macrophage and Mycobacterium avium.
    Bermudez LE
    Alcohol; 1994; 11(2):69-73. PubMed ID: 8204205
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Resistance of Mycobacterium avium to microbicidal activities in bone-marrow macrophages from naturally-susceptible (C57B1/6) and naturally-resistant (DBA-2) mice.
    Rastogi N; Fréhel C
    Acta Leprol; 1989; 7 Suppl 1():177-8. PubMed ID: 2503982
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.