BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 17459915)

  • 1. Thigh muscle activation distribution and pulmonary VO2 kinetics during moderate, heavy, and very heavy intensity cycling exercise in humans.
    Endo MY; Kobayakawa M; Kinugasa R; Kuno S; Akima H; Rossiter HB; Miura A; Fukuba Y
    Am J Physiol Regul Integr Comp Physiol; 2007 Aug; 293(2):R812-20. PubMed ID: 17459915
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Oxygen uptake kinetics during moderate, heavy and severe intensity "submaximal" exercise in humans: the influence of muscle fibre type and capillarisation.
    Pringle JS; Doust JH; Carter H; Tolfrey K; Campbell IT; Sakkas GK; Jones AM
    Eur J Appl Physiol; 2003 May; 89(3-4):289-300. PubMed ID: 12736837
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of priming exercise intensity on the dynamic linearity of the pulmonary VO(2) response during heavy exercise.
    Endo M; Usui S; Fukuoka Y; Miura A; Rossiter HB; Fukuba Y
    Eur J Appl Physiol; 2004 May; 91(5-6):545-54. PubMed ID: 14648126
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The slow component of O(2) uptake is not accompanied by changes in muscle EMG during repeated bouts of heavy exercise in humans.
    Scheuermann BW; Hoelting BD; Noble ML; Barstow TJ
    J Physiol; 2001 Feb; 531(Pt 1):245-56. PubMed ID: 11179407
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of prior arm exercise on pulmonary gas exchange kinetics during high-intensity leg exercise in humans.
    Bohnert B; Ward SA; Whipp BJ
    Exp Physiol; 1998 Jul; 83(4):557-70. PubMed ID: 9717077
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of prior heavy exercise on VO(2) kinetics during heavy exercise are related to changes in muscle activity.
    Burnley M; Doust JH; Ball D; Jones AM
    J Appl Physiol (1985); 2002 Jul; 93(1):167-74. PubMed ID: 12070201
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of prior exercise and recovery duration on oxygen uptake kinetics during heavy exercise in humans.
    Burnley M; Doust JH; Carter H; Jones AM
    Exp Physiol; 2001 May; 86(3):417-25. PubMed ID: 11429659
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Kinetics of .VO2 and femoral artery blood flow during heavy-intensity, knee-extension exercise.
    Paterson ND; Kowalchuk JM; Paterson DH
    J Appl Physiol (1985); 2005 Aug; 99(2):683-90. PubMed ID: 15817720
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Muscle activation and the slow component rise in oxygen uptake during cycling.
    Saunders MJ; Evans EM; Arngrimsson SA; Allison JD; Warren GL; Cureton KJ
    Med Sci Sports Exerc; 2000 Dec; 32(12):2040-5. PubMed ID: 11128849
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of prior heavy arm and leg exercise on VO2 kinetics during heavy leg exercise.
    Koppo K; Jones AM; Bouckaert J
    Eur J Appl Physiol; 2003 Feb; 88(6):593-600. PubMed ID: 12560960
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prior heavy knee extension exercise does not affect V̇O₂ kinetics during subsequent heavy cycling exercise.
    Thistlethwaite JR; Thompson BC; Gonzales JU; Scheuermann BW
    Eur J Appl Physiol; 2008 Mar; 102(4):481-91. PubMed ID: 18026978
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of L-NAME on pulmonary O2 uptake kinetics during heavy-intensity cycle exercise.
    Jones AM; Wilkerson DP; Wilmshurst S; Campbell IT
    J Appl Physiol (1985); 2004 Mar; 96(3):1033-8. PubMed ID: 14657038
    [TBL] [Abstract][Full Text] [Related]  

  • 13. VO2 response at the onset of heavy exercise is accelerated not by diathermic warming of the thigh muscles but by prior heavy exercise.
    Fukuba Y; Shinhara Y; Houman T; Endo MY; Yamada M; Miura A; Hayashi N; Sato H; Koga S; Yoshida T
    Res Sports Med; 2012 Jan; 20(1):13-24. PubMed ID: 22242734
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of different pedal rates on oxygen uptake slow component during constant-load cycling exercise.
    Migita T; Hirakoba K
    J Sports Med Phys Fitness; 2006 Jun; 46(2):189-96. PubMed ID: 16823346
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Negative accumulated oxygen deficit during heavy and very heavy intensity cycle ergometry in humans.
    Ozyener F; Rossiter HB; Ward SA; Whipp BJ
    Eur J Appl Physiol; 2003 Sep; 90(1-2):185-90. PubMed ID: 14504952
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prior heavy exercise increases oxygen cost during moderate exercise without associated change in surface EMG.
    Gonzales JU; Scheuermann BW
    J Electromyogr Kinesiol; 2008 Feb; 18(1):99-107. PubMed ID: 17064938
    [TBL] [Abstract][Full Text] [Related]  

  • 17. MyHC II content in the vastus lateralis m. quadricipitis femoris is positively correlated with the magnitude of the non-linear increase in the VO2 / power output relationship in humans.
    Zoladz JA; Duda K; Karasinski J; Majerczak J; Kolodziejski L; Korzeniewski B
    J Physiol Pharmacol; 2002 Dec; 53(4 Pt 2):805-21. PubMed ID: 12510865
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Oxygen uptake kinetics during treadmill running across exercise intensity domains.
    Carter H; Pringle JS; Jones AM; Doust JH
    Eur J Appl Physiol; 2002 Feb; 86(4):347-54. PubMed ID: 11990749
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Indices of electromyographic activity and the "slow" component of oxygen uptake kinetics during high-intensity knee-extension exercise in humans.
    Garland SW; Wang W; Ward SA
    Eur J Appl Physiol; 2006 Jul; 97(4):413-23. PubMed ID: 16685552
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Oxygen uptake kinetics in treadmill running and cycle ergometry: a comparison.
    Carter H; Jones AM; Barstow TJ; Burnley M; Williams CA; Doust JH
    J Appl Physiol (1985); 2000 Sep; 89(3):899-907. PubMed ID: 10956332
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.