These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

480 related articles for article (PubMed ID: 1746)

  • 41. Electron transport and photophosphorylation in chloroplasts as a function of the electron acceptor. 3. A dibromothymoquinone-insensitive phosphorylation reaction associated with photosystem II.
    Izawa S; Gould JM; Ort DR; Felker P; Good NE
    Biochim Biophys Acta; 1973 Apr; 305(1):119-28. PubMed ID: 4719595
    [No Abstract]   [Full Text] [Related]  

  • 42. Univalent reduction of molecular oxygen by spinach chloroplasts on illumination.
    Asada K; Kiso K; Yoshikawa K
    J Biol Chem; 1974 Apr; 249(7):2175-81. PubMed ID: 4362064
    [No Abstract]   [Full Text] [Related]  

  • 43. Delayed light studies on photosynthetic energy conversion. VII. Effect of the high energy state, coupled to 2,3,5,6-tetramethyl p-phenylenediamine-catalyzed cyclic electron flow, on millisecond emission from chloroplasts and digitonin subchloroplast particles.
    Cohen WS; Bertsch W
    Biochim Biophys Acta; 1974 Jun; 347(3):371-82. PubMed ID: 4135380
    [No Abstract]   [Full Text] [Related]  

  • 44. Chemical modification of spinach ferredoxin: evidence for the involvement of a complex between ferredoxin and ferredoxin:NADP oxidoreductase in NADP photoreduction.
    Davis DJ; Pietro AS
    Biochem Biophys Res Commun; 1977 Jan; 74(1):33-40. PubMed ID: 13793
    [No Abstract]   [Full Text] [Related]  

  • 45. Chelator-sensitive in chloroplast electron transport.
    Barr R; Crane FL
    Biochem Biophys Res Commun; 1974 Sep; 60(2):748-55. PubMed ID: 4370722
    [No Abstract]   [Full Text] [Related]  

  • 46. The inhibition of oxygen production and the uncoupling of electron transport in photosynthesis in chloroplasts by substituted thiophens.
    Gregory RP
    Biochim Biophys Acta; 1974 Nov; 368(2):228-34. PubMed ID: 4429690
    [No Abstract]   [Full Text] [Related]  

  • 47. Primary reactions, plastoquinone and fluorescence yield in subchloroplast fragments prepared with deoxycholate.
    van Gorkom HJ; Tamminga JJ; Haveman J
    Biochim Biophys Acta; 1974 Jun; 347(3):417-38. PubMed ID: 4842006
    [No Abstract]   [Full Text] [Related]  

  • 48. Studies on the energy coupling sites of photophosphorylation. I. Separation of site I and site II by partial reactions of the chloroplast electron transport chain.
    Gould JM; Izawa S
    Biochim Biophys Acta; 1973 Aug; 314(2):211-23. PubMed ID: 4747066
    [No Abstract]   [Full Text] [Related]  

  • 49. [Two molecular forms of pea ferredoxin in the electron transport chain of chloroplasts].
    Gins VK; Tikhonov AN; Mukhin EN; Ruuge EK
    Biokhimiia; 1982 Nov; 47(11):1859-66. PubMed ID: 6295514
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Electron transport and photophosphorylation in chloroplasts as a function of the electron acceptor. II. Acceptor-specific inhibition by KCN.
    Ouitrakul R; Izawa S
    Biochim Biophys Acta; 1973 Apr; 305(1):105-18. PubMed ID: 4719594
    [No Abstract]   [Full Text] [Related]  

  • 51. Native and artificial energy-conserving sites in cyclic photophosphorylation systems.
    Hauska G; Reimer S; Trebst A
    Biochim Biophys Acta; 1974 Jul; 357(1):1-13. PubMed ID: 4414777
    [No Abstract]   [Full Text] [Related]  

  • 52. Redox and ATP control of photosynthetic cyclic electron flow in Chlamydomonas reinhardtii (I) aerobic conditions.
    Alric J; Lavergne J; Rappaport F
    Biochim Biophys Acta; 2010 Jan; 1797(1):44-51. PubMed ID: 19651104
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The involvement of ferredoxin-NADP+ reductase in cyclic electron transport in chloroplasts.
    Shahak Y; Crowther D; Hind G
    Biochim Biophys Acta; 1981 Jul; 636(2):234-43. PubMed ID: 7284351
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Photosystem II energy coupling in chloroplasts with H2O2 as electron donor.
    Pan RL; Izawa S
    Biochim Biophys Acta; 1979 Aug; 547(2):311-9. PubMed ID: 465490
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Relationship between inhibitor binding by chloroplasts and inhibition of photosynthetic electron transport.
    Tischer W; Strotmann H
    Biochim Biophys Acta; 1977 Apr; 460(1):113-25. PubMed ID: 856261
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The role of plastidic cytochrome c in algal electron transport and photophosphorylation.
    Böhme H; Kunert KJ; Böger P
    Biochim Biophys Acta; 1978 Feb; 501(2):275-85. PubMed ID: 202317
    [TBL] [Abstract][Full Text] [Related]  

  • 57. [Effect of dibromothymoquinone on photosynthetic electron transport].
    Roshchina VV
    Biokhimiia; 1979 Mar; 44(3):477-81. PubMed ID: 465592
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Quinones as mediators of both artificial and cyclic phosphorylation in spinach chloroplasts.
    Binder RG; Selman BR
    Biochim Biophys Acta; 1980 Apr; 590(2):212-22. PubMed ID: 7370236
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Effects of Nanoanatase TiO2 on photosynthesis of spinach chloroplasts under different light illumination.
    Lei Z; Mingyu S; Chao L; Liang C; Hao H; Xiao W; Xiaoqing L; Fan Y; Fengqing G; Fashui H
    Biol Trace Elem Res; 2007 Oct; 119(1):68-76. PubMed ID: 17914221
    [TBL] [Abstract][Full Text] [Related]  

  • 60. [Components of cyclic electron transport in stromal subchloroplast particles enriched with photosystem I].
    Krendeleva TE; Kononenko AA; Fadeeva LM; Nizovskaia NV
    Biokhimiia; 1980 Oct; 45(10):1819-28. PubMed ID: 7236769
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 24.