BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

279 related articles for article (PubMed ID: 17460248)

  • 1. Functional comparisons of visual arrestins in rod photoreceptors of transgenic mice.
    Chan S; Rubin WW; Mendez A; Liu X; Song X; Hanson SM; Craft CM; Gurevich VV; Burns ME; Chen J
    Invest Ophthalmol Vis Sci; 2007 May; 48(5):1968-75. PubMed ID: 17460248
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prolonged photoresponses in transgenic mouse rods lacking arrestin.
    Xu J; Dodd RL; Makino CL; Simon MI; Baylor DA; Chen J
    Nature; 1997 Oct; 389(6650):505-9. PubMed ID: 9333241
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Control of rhodopsin activity in vision.
    Baylor DA; Burns ME
    Eye (Lond); 1998; 12 ( Pt 3b)():521-5. PubMed ID: 9775212
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A 221-bp fragment of the mouse opsin promoter directs expression specifically to the rod photoreceptors of transgenic mice.
    Quiambao AB; Peachey NS; Mangini NJ; Röhlich P; Hollyfield JG; al-Ubaidi MR
    Vis Neurosci; 1997; 14(4):617-25. PubMed ID: 9278991
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Arrestin Facilitates Rhodopsin Dephosphorylation
    Hsieh CL; Yao Y; Gurevich VV; Chen J
    J Neurosci; 2022 Apr; 42(17):3537-3545. PubMed ID: 35332081
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The cloning of GRK7, a candidate cone opsin kinase, from cone- and rod-dominant mammalian retinas.
    Weiss ER; Raman D; Shirakawa S; Ducceschi MH; Bertram PT; Wong F; Kraft TW; Osawa S
    Mol Vis; 1998 Dec; 4():27. PubMed ID: 9852166
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The electroretinogram of the rhodopsin knockout mouse.
    Toda K; Bush RA; Humphries P; Sieving PA
    Vis Neurosci; 1999; 16(2):391-8. PubMed ID: 10367972
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Immunolocalization of X-arrestin in human cone photoreceptors.
    Sakuma H; Inana G; Murakami A; Higashide T; McLaren MJ
    FEBS Lett; 1996 Mar; 382(1-2):105-10. PubMed ID: 8612728
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Arrestin function in inactivation of G protein-coupled receptor rhodopsin in vivo.
    Dolph PJ; Ranganathan R; Colley NJ; Hardy RW; Socolich M; Zuker CS
    Science; 1993 Jun; 260(5116):1910-6. PubMed ID: 8316831
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Morphological, physiological, and biochemical changes in rhodopsin knockout mice.
    Lem J; Krasnoperova NV; Calvert PD; Kosaras B; Cameron DA; Nicolò M; Makino CL; Sidman RL
    Proc Natl Acad Sci U S A; 1999 Jan; 96(2):736-41. PubMed ID: 9892703
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Opsin localization and rhodopsin photochemistry in a transgenic mouse model of retinitis pigmentosa.
    Wu TH; Ting TD; Okajima TI; Pepperberg DR; Ho YK; Ripps H; Naash MI
    Neuroscience; 1998 Dec; 87(3):709-17. PubMed ID: 9758235
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Photovoltage of rods and cones in the macaque retina.
    Schneeweis DM; Schnapf JL
    Science; 1995 May; 268(5213):1053-6. PubMed ID: 7754386
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Species-specific differences in expression of G-protein-coupled receptor kinase (GRK) 7 and GRK1 in mammalian cone photoreceptor cells: implications for cone cell phototransduction.
    Weiss ER; Ducceschi MH; Horner TJ; Li A; Craft CM; Osawa S
    J Neurosci; 2001 Dec; 21(23):9175-84. PubMed ID: 11717351
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Occupancy of the chromophore binding site of opsin activates visual transduction in rod photoreceptors.
    Kefalov VJ; Carter Cornwall M; Crouch RK
    J Gen Physiol; 1999 Mar; 113(3):491-503. PubMed ID: 10051522
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The sequence of arrestins from rod and cone photoreceptors in the frogs Rana catesbeiana and Rana pipiens. Localization of gene transcripts by reverse-transcription polymerase chain reaction on isolated photoreceptors.
    Abdulaeva G; Hargrave PA; Smith WC
    Eur J Biochem; 1995 Dec; 234(2):437-42. PubMed ID: 8536686
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sensitivity of Mammalian Cone Photoreceptors to Infrared Light.
    Vinberg F; Palczewska G; Zhang J; Komar K; Wojtkowski M; Kefalov VJ; Palczewski K
    Neuroscience; 2019 Sep; 416():100-108. PubMed ID: 31400484
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Abnormal photoresponses and light-induced apoptosis in rods lacking rhodopsin kinase.
    Chen CK; Burns ME; Spencer M; Niemi GA; Chen J; Hurley JB; Baylor DA; Simon MI
    Proc Natl Acad Sci U S A; 1999 Mar; 96(7):3718-22. PubMed ID: 10097103
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Single amino acid residue as a functional determinant of rod and cone visual pigments.
    Imai H; Kojima D; Oura T; Tachibanaki S; Terakita A; Shichida Y
    Proc Natl Acad Sci U S A; 1997 Mar; 94(6):2322-6. PubMed ID: 9122193
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Photoreceptor organization and rhythmic phagocytosis in the nile rat Arvicanthis ansorgei: a novel diurnal rodent model for the study of cone pathophysiology.
    Bobu C; Craft CM; Masson-Pevet M; Hicks D
    Invest Ophthalmol Vis Sci; 2006 Jul; 47(7):3109-18. PubMed ID: 16799057
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reporter gene expression in cones in transgenic mice carrying bovine rhodopsin promoter/lacZ transgenes.
    Gouras P; Kjeldbye H; Zack DJ
    Vis Neurosci; 1994; 11(6):1227-31. PubMed ID: 7841129
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.