BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 17460248)

  • 1. Functional comparisons of visual arrestins in rod photoreceptors of transgenic mice.
    Chan S; Rubin WW; Mendez A; Liu X; Song X; Hanson SM; Craft CM; Gurevich VV; Burns ME; Chen J
    Invest Ophthalmol Vis Sci; 2007 May; 48(5):1968-75. PubMed ID: 17460248
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Arrestin Facilitates Rhodopsin Dephosphorylation
    Hsieh CL; Yao Y; Gurevich VV; Chen J
    J Neurosci; 2022 Apr; 42(17):3537-3545. PubMed ID: 35332081
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Species-specific differences in expression of G-protein-coupled receptor kinase (GRK) 7 and GRK1 in mammalian cone photoreceptor cells: implications for cone cell phototransduction.
    Weiss ER; Ducceschi MH; Horner TJ; Li A; Craft CM; Osawa S
    J Neurosci; 2001 Dec; 21(23):9175-84. PubMed ID: 11717351
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sensitivity of Mammalian Cone Photoreceptors to Infrared Light.
    Vinberg F; Palczewska G; Zhang J; Komar K; Wojtkowski M; Kefalov VJ; Palczewski K
    Neuroscience; 2019 Sep; 416():100-108. PubMed ID: 31400484
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Photoreceptor organization and rhythmic phagocytosis in the nile rat Arvicanthis ansorgei: a novel diurnal rodent model for the study of cone pathophysiology.
    Bobu C; Craft CM; Masson-Pevet M; Hicks D
    Invest Ophthalmol Vis Sci; 2006 Jul; 47(7):3109-18. PubMed ID: 16799057
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Constitutively active rhodopsin mutants causing night blindness are effectively phosphorylated by GRKs but differ in arrestin-1 binding.
    Vishnivetskiy SA; Ostermaier MK; Singhal A; Panneels V; Homan KT; Glukhova A; Sligar SG; Tesmer JJ; Schertler GF; Standfuss J; Gurevich VV
    Cell Signal; 2013 Nov; 25(11):2155-62. PubMed ID: 23872075
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Each rhodopsin molecule binds its own arrestin.
    Hanson SM; Gurevich EV; Vishnivetskiy SA; Ahmed MR; Song X; Gurevich VV
    Proc Natl Acad Sci U S A; 2007 Feb; 104(9):3125-8. PubMed ID: 17360618
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Photosensitivity of Rhodopsin Bleaching and Light-Induced Increases of Fundus Reflectance in Mice Measured In Vivo With Scanning Laser Ophthalmoscopy.
    Zhang P; Goswami M; Zawadzki RJ; Pugh EN
    Invest Ophthalmol Vis Sci; 2016 Jul; 57(8):3650-64. PubMed ID: 27403994
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metarhodopsin control by arrestin, light-filtering screening pigments, and visual pigment turnover in invertebrate microvillar photoreceptors.
    Stavenga DG; Hardie RC
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2011 Mar; 197(3):227-41. PubMed ID: 21046112
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A kinetic analysis of mouse rod and cone photoreceptor responses.
    Reingruber J; Ingram NT; Griffis KG; Fain GL
    J Physiol; 2020 Sep; 598(17):3747-3763. PubMed ID: 32557629
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A critical role of CaBP4 in the cone synapse.
    Maeda T; Lem J; Palczewski K; Haeseleer F
    Invest Ophthalmol Vis Sci; 2005 Nov; 46(11):4320-7. PubMed ID: 16249514
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regulation of arrestin binding by rhodopsin phosphorylation level.
    Vishnivetskiy SA; Raman D; Wei J; Kennedy MJ; Hurley JB; Gurevich VV
    J Biol Chem; 2007 Nov; 282(44):32075-83. PubMed ID: 17848565
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Protein kinase C activity and light sensitivity of single amphibian rods.
    Xiong W; Nakatani K; Ye B; Yau K
    J Gen Physiol; 1997 Oct; 110(4):441-52. PubMed ID: 9379174
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dopamine D2 receptor-mediated modulation of rod-cone coupling in the Xenopus retina.
    Krizaj D; Gábriel R; Owen WG; Witkovsky P
    J Comp Neurol; 1998 Sep; 398(4):529-38. PubMed ID: 9717707
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Autophagy supports survival and phototransduction protein levels in rod photoreceptors.
    Zhou Z; Doggett TA; Sene A; Apte RS; Ferguson TA
    Cell Death Differ; 2015 Mar; 22(3):488-98. PubMed ID: 25571975
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Variations in photoreceptor throughput to mouse visual cortex and the unique effects on tuning.
    Rhim I; Coello-Reyes G; Nauhaus I
    Sci Rep; 2021 Jun; 11(1):11937. PubMed ID: 34099749
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regulation of rod photoreceptor function by farnesylated G-protein γ-subunits.
    Kolesnikov AV; Lobysheva E; Gnana-Prakasam JP; Kefalov VJ; Kisselev OG
    PLoS One; 2022; 17(8):e0272506. PubMed ID: 35939447
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular properties of rhodopsin and rod function.
    Imai H; Kefalov V; Sakurai K; Chisaka O; Ueda Y; Onishi A; Morizumi T; Fu Y; Ichikawa K; Nakatani K; Honda Y; Chen J; Yau KW; Shichida Y
    J Biol Chem; 2007 Mar; 282(9):6677-84. PubMed ID: 17194706
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optoretinogram: optical measurement of human cone and rod photoreceptor responses to light.
    Azimipour M; Valente D; Vienola KV; Werner JS; Zawadzki RJ; Jonnal RS
    Opt Lett; 2020 Sep; 45(17):4658-4661. PubMed ID: 32870829
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Calcium feedback to cGMP synthesis strongly attenuates single-photon responses driven by long rhodopsin lifetimes.
    Gross OP; Pugh EN; Burns ME
    Neuron; 2012 Oct; 76(2):370-82. PubMed ID: 23083739
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.