BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

236 related articles for article (PubMed ID: 17460289)

  • 1. Automated detection and differentiation of drusen, exudates, and cotton-wool spots in digital color fundus photographs for diabetic retinopathy diagnosis.
    Niemeijer M; van Ginneken B; Russell SR; Suttorp-Schulten MS; Abràmoff MD
    Invest Ophthalmol Vis Sci; 2007 May; 48(5):2260-7. PubMed ID: 17460289
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Automated System for Referral of Cotton-Wool Spots.
    Naqvi SAG; Zafar HMF; Ul Haq I
    Curr Diabetes Rev; 2018; 14(2):168-174. PubMed ID: 27908249
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Detection of Hard Exudates in Colour Fundus Images Using Fuzzy Support Vector Machine-Based Expert System.
    Jaya T; Dheeba J; Singh NA
    J Digit Imaging; 2015 Dec; 28(6):761-8. PubMed ID: 25822397
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Automated detection of fundus photographic red lesions in diabetic retinopathy.
    Larsen M; Godt J; Larsen N; Lund-Andersen H; Sjølie AK; Agardh E; Kalm H; Grunkin M; Owens DR
    Invest Ophthalmol Vis Sci; 2003 Feb; 44(2):761-6. PubMed ID: 12556411
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simple methods for segmentation and measurement of diabetic retinopathy lesions in retinal fundus images.
    Köse C; Sevik U; Ikibaş C; Erdöl H
    Comput Methods Programs Biomed; 2012 Aug; 107(2):274-93. PubMed ID: 21757250
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Detection of retinal lesions in diabetic retinopathy: comparative evaluation of 7-field digital color photography versus red-free photography.
    Venkatesh P; Sharma R; Vashist N; Vohra R; Garg S
    Int Ophthalmol; 2015 Oct; 35(5):635-40. PubMed ID: 22961609
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A decision support system for automatic screening of non-proliferative diabetic retinopathy.
    Reza AW; Eswaran C
    J Med Syst; 2011 Feb; 35(1):17-24. PubMed ID: 20703589
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparing diabetic retinopathy lesions in scanning laser ophthalmoscopy and colour fundus photography.
    Nghiem AZ; Nderitu P; Lukic M; Khatun M; Largan R; Kortuem K; Balaskas K; Sim D
    Acta Ophthalmol; 2019 Dec; 97(8):e1035-e1040. PubMed ID: 31286663
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development and Validation of Deep Learning Models for Screening Multiple Abnormal Findings in Retinal Fundus Images.
    Son J; Shin JY; Kim HD; Jung KH; Park KH; Park SJ
    Ophthalmology; 2020 Jan; 127(1):85-94. PubMed ID: 31281057
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Automated detection of exudates for diabetic retinopathy screening.
    Fleming AD; Philip S; Goatman KA; Williams GJ; Olson JA; Sharp PF
    Phys Med Biol; 2007 Dec; 52(24):7385-96. PubMed ID: 18065845
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Retinal image analysis based on mixture models to detect hard exudates.
    Sánchez CI; García M; Mayo A; López MI; Hornero R
    Med Image Anal; 2009 Aug; 13(4):650-8. PubMed ID: 19539518
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of diagnosis of early retinal lesions of diabetic retinopathy between a computer system and human experts.
    Lee SC; Lee ET; Kingsley RM; Wang Y; Russell D; Klein R; Warn A
    Arch Ophthalmol; 2001 Apr; 119(4):509-15. PubMed ID: 11296016
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A deep learning system for detecting diabetic retinopathy across the disease spectrum.
    Dai L; Wu L; Li H; Cai C; Wu Q; Kong H; Liu R; Wang X; Hou X; Liu Y; Long X; Wen Y; Lu L; Shen Y; Chen Y; Shen D; Yang X; Zou H; Sheng B; Jia W
    Nat Commun; 2021 May; 12(1):3242. PubMed ID: 34050158
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of nonmydriatic digitized video fundus images with standard 35-mm slides to screen for and identify specific lesions of age-related macular degeneration.
    Lim JI; Labree L; Nichols T; Cardenas I
    Retina; 2002 Feb; 22(1):59-64. PubMed ID: 11884880
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Decision support system for the detection and grading of hard exudates from color fundus photographs.
    Jaafar HF; Nandi AK; Al-Nuaimy W
    J Biomed Opt; 2011 Nov; 16(11):116001. PubMed ID: 22112106
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Computer classification of nonproliferative diabetic retinopathy.
    Lee SC; Lee ET; Wang Y; Klein R; Kingsley RM; Warn A
    Arch Ophthalmol; 2005 Jun; 123(6):759-64. PubMed ID: 15955976
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Automated detection of severe diabetic retinopathy using deep learning method.
    Zhang X; Li F; Li D; Wei Q; Han X; Zhang B; Chen H; Zhang Y; Mo B; Hu B; Ding D; Li X; Yu W; Chen Y
    Graefes Arch Clin Exp Ophthalmol; 2022 Mar; 260(3):849-856. PubMed ID: 34591173
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A comparison of digital nonmydriatic fundus imaging with standard 35-millimeter slides for diabetic retinopathy.
    Lim JI; LaBree L; Nichols T; Cardenas I
    Ophthalmology; 2000 May; 107(5):866-70. PubMed ID: 10811076
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Automated detection of dark and bright lesions in retinal images for early detection of diabetic retinopathy.
    Akram UM; Khan SA
    J Med Syst; 2012 Oct; 36(5):3151-62. PubMed ID: 22090037
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Automatic drusen quantification and risk assessment of age-related macular degeneration on color fundus images.
    van Grinsven MJ; Lechanteur YT; van de Ven JP; van Ginneken B; Hoyng CB; Theelen T; Sánchez CI
    Invest Ophthalmol Vis Sci; 2013 Apr; 54(4):3019-27. PubMed ID: 23572106
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.