These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
245 related articles for article (PubMed ID: 17460759)
21. Regulation of Wnt signaling and embryo patterning by an extracellular sulfatase. Dhoot GK; Gustafsson MK; Ai X; Sun W; Standiford DM; Emerson CP Science; 2001 Aug; 293(5535):1663-6. PubMed ID: 11533491 [TBL] [Abstract][Full Text] [Related]
22. [Effect of siRNA-mediated beta-catenin gene on Wnt signal pathway in lung adenocarcinoma A549 cell]. Teng Y; Wang XW; Wang YW; Wang J Zhonghua Yi Xue Za Zhi; 2010 Apr; 90(14):988-92. PubMed ID: 20646651 [TBL] [Abstract][Full Text] [Related]
23. Sulfatase 1 and sulfatase 2 as novel regulators of macrophage antigen presentation and phagocytosis. Kim HJ; Kim HS; Hong YH Yeungnam Univ J Med; 2021 Oct; 38(4):326-336. PubMed ID: 34157797 [TBL] [Abstract][Full Text] [Related]
24. Measuring the activities of the Sulfs: two novel heparin/heparan sulfate endosulfatases. Uchimura K; Morimoto-Tomita M; Rosen SD Methods Enzymol; 2006; 416():243-53. PubMed ID: 17113870 [TBL] [Abstract][Full Text] [Related]
25. Enhanced tumorigenic potential of colorectal cancer cells by extracellular sulfatases. Vicente CM; Lima MA; Yates EA; Nader HB; Toma L Mol Cancer Res; 2015 Mar; 13(3):510-23. PubMed ID: 25477293 [TBL] [Abstract][Full Text] [Related]
26. Sulf-2, a proangiogenic heparan sulfate endosulfatase, is upregulated in breast cancer. Morimoto-Tomita M; Uchimura K; Bistrup A; Lum DH; Egeblad M; Boudreau N; Werb Z; Rosen SD Neoplasia; 2005 Nov; 7(11):1001-10. PubMed ID: 16331886 [TBL] [Abstract][Full Text] [Related]
27. Sulf1 has ligand-dependent effects on canonical and non-canonical Wnt signalling. Fellgett SW; Maguire RJ; Pownall ME J Cell Sci; 2015 Apr; 128(7):1408-21. PubMed ID: 25681501 [TBL] [Abstract][Full Text] [Related]
28. Silencing of hHS6ST2 inhibits progression of pancreatic cancer through inhibition of Notch signalling. Song K; Li Q; Peng YB; Li J; Ding K; Chen LJ; Shao CH; Zhang LJ; Li P Biochem J; 2011 Jun; 436(2):271-82. PubMed ID: 21443520 [TBL] [Abstract][Full Text] [Related]
29. Expression of novel extracellular sulfatases Sulf-1 and Sulf-2 in normal and osteoarthritic articular cartilage. Otsuki S; Taniguchi N; Grogan SP; D'Lima D; Kinoshita M; Lotz M Arthritis Res Ther; 2008; 10(3):R61. PubMed ID: 18507859 [TBL] [Abstract][Full Text] [Related]
30. N-myc downstream regulated gene-1 expression correlates with reduced pancreatic cancer growth and increased apoptosis in vitro and in vivo. Angst E; Dawson DW; Stroka D; Gloor B; Park J; Candinas D; Reber HA; Hines OJ; Eibl G Surgery; 2011 May; 149(5):614-24. PubMed ID: 21236457 [TBL] [Abstract][Full Text] [Related]
31. Matrix detachment and proteasomal inhibitors diminish Sulf-2 expression in breast cancer cell lines and mouse xenografts. Khurana A; Jung-Beom D; He X; Kim SH; Busby RC; Lorenzon L; Villa M; Baldi A; Molina J; Goetz MP; Shridhar V Clin Exp Metastasis; 2013 Apr; 30(4):407-15. PubMed ID: 23412907 [TBL] [Abstract][Full Text] [Related]
32. Human extracellular sulfatases use a dual mechanism for regulation of growth factor interactions with heparan sulfate proteoglycans. Timm BM; Follmar JL; Porell RN; Glass K; Thacker BE; Glass CA; Godula K bioRxiv; 2023 Nov; ():. PubMed ID: 38045270 [TBL] [Abstract][Full Text] [Related]
33. Extracellular regulation of developmental cell signaling by XtSulf1. Freeman SD; Moore WM; Guiral EC; Holme AD; Turnbull JE; Pownall ME Dev Biol; 2008 Aug; 320(2):436-45. PubMed ID: 18617162 [TBL] [Abstract][Full Text] [Related]
34. A study of the suppressive effect on human pancreatic adenocarcinoma cell proliferation and angiogenesis by stable plasmid-based siRNA silencing of c-Src gene expression. Zhao X; Li DC; Zhao H; Li Z; Wang JX; Zhu DM; Zhou J; Cen JN Oncol Rep; 2012 Mar; 27(3):628-36. PubMed ID: 22200682 [TBL] [Abstract][Full Text] [Related]
35. Differential expression of transforming growth factor beta receptors in human pancreatic adenocarcinoma. Venkatasubbarao K; Ahmed MM; Mohiuddin M; Swiderski C; Lee E; Gower WR; Salhab KF; McGrath P; Strodel W; Freeman JW Anticancer Res; 2000; 20(1A):43-51. PubMed ID: 10769633 [TBL] [Abstract][Full Text] [Related]
36. Implications of targeted genomic disruption of β-catenin in BxPC-3 pancreatic adenocarcinoma cells. Olsen PA; Solberg NT; Lund K; Vehus T; Gelazauskaite M; Wilson SR; Krauss S PLoS One; 2014; 9(12):e115496. PubMed ID: 25536063 [TBL] [Abstract][Full Text] [Related]
37. Trisaccharide Sulfate and Its Sulfonamide as an Effective Substrate and Inhibitor of Human Endo- Chiu LT; Sabbavarapu NM; Lin WC; Fan CY; Wu CC; Cheng TR; Wong CH; Hung SC J Am Chem Soc; 2020 Mar; 142(11):5282-5292. PubMed ID: 32083852 [TBL] [Abstract][Full Text] [Related]
38. [Sulfs: extracellular endosulfatases that regulate physiological functions of heparan sulfate]. Uchimura K Seikagaku; 2011 Mar; 83(3):216-23. PubMed ID: 21516688 [No Abstract] [Full Text] [Related]
39. Expression of Akt kinase-interacting protein 1, a scaffold protein of the PI3K/PDK1/Akt pathway, in pancreatic cancer. Ohtsubo K; Yamada T; Zhao L; Jin TF; Takeuchi S; Mouri H; Yamashita K; Yasumoto K; Fujita N; Kitagawa H; Ohta T; Ikeda H; Yano S Pancreas; 2014 Oct; 43(7):1093-100. PubMed ID: 25036909 [TBL] [Abstract][Full Text] [Related]
40. Heparan sulfate proteoglycans and human breast cancer epithelial cell tumorigenicity. Okolicsanyi RK; van Wijnen AJ; Cool SM; Stein GS; Griffiths LR; Haupt LM J Cell Biochem; 2014 May; 115(5):967-76. PubMed ID: 24357546 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]