BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 17460794)

  • 1. Quantitative shotgun proteomics using a protease with broad specificity and normalized spectral abundance factors.
    Zybailov BL; Florens L; Washburn MP
    Mol Biosyst; 2007 May; 3(5):354-60. PubMed ID: 17460794
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Statistical analysis of membrane proteome expression changes in Saccharomyces cerevisiae.
    Zybailov B; Mosley AL; Sardiu ME; Coleman MK; Florens L; Washburn MP
    J Proteome Res; 2006 Sep; 5(9):2339-47. PubMed ID: 16944946
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Detecting differential and correlated protein expression in label-free shotgun proteomics.
    Zhang B; VerBerkmoes NC; Langston MA; Uberbacher E; Hettich RL; Samatova NF
    J Proteome Res; 2006 Nov; 5(11):2909-18. PubMed ID: 17081042
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of dynamic exclusion duration on spectral count based quantitative proteomics.
    Zhang Y; Wen Z; Washburn MP; Florens L
    Anal Chem; 2009 Aug; 81(15):6317-26. PubMed ID: 19586016
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Refinements to label free proteome quantitation: how to deal with peptides shared by multiple proteins.
    Zhang Y; Wen Z; Washburn MP; Florens L
    Anal Chem; 2010 Mar; 82(6):2272-81. PubMed ID: 20166708
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of confidence and reproducibility in quantitative proteomics performed by a capillary isoelectric focusing-based proteomic platform coupled with a spectral counting approach.
    Balgley BM; Wang W; Song T; Fang X; Yang L; Lee CS
    Electrophoresis; 2008 Jul; 29(14):3047-54. PubMed ID: 18655040
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A combination of immobilised pH gradients improves membrane proteomics.
    Chick JM; Haynes PA; Bjellqvist B; Baker MS
    J Proteome Res; 2008 Nov; 7(11):4974-81. PubMed ID: 18837535
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Semi-supervised learning for peptide identification from shotgun proteomics datasets.
    Käll L; Canterbury JD; Weston J; Noble WS; MacCoss MJ
    Nat Methods; 2007 Nov; 4(11):923-5. PubMed ID: 17952086
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of spectral counting in quantitative proteomics.
    Lundgren DH; Hwang SI; Wu L; Han DK
    Expert Rev Proteomics; 2010 Feb; 7(1):39-53. PubMed ID: 20121475
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Technical, experimental, and biological variations in isobaric tags for relative and absolute quantitation (iTRAQ).
    Gan CS; Chong PK; Pham TK; Wright PC
    J Proteome Res; 2007 Feb; 6(2):821-7. PubMed ID: 17269738
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The proteomic response of Saccharomyces cerevisiae in very high glucose conditions with amino acid supplementation.
    Pham TK; Wright PC
    J Proteome Res; 2008 Nov; 7(11):4766-74. PubMed ID: 18808174
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Global quantitative proteomic profiling through 18O-labeling in combination with MS/MS spectra analysis.
    White CA; Oey N; Emili A
    J Proteome Res; 2009 Jul; 8(7):3653-65. PubMed ID: 19400582
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Statistical similarities between transcriptomics and quantitative shotgun proteomics data.
    Pavelka N; Fournier ML; Swanson SK; Pelizzola M; Ricciardi-Castagnoli P; Florens L; Washburn MP
    Mol Cell Proteomics; 2008 Apr; 7(4):631-44. PubMed ID: 18029349
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Label-free quantitative shotgun proteomics using normalized spectral abundance factors.
    Neilson KA; Keighley T; Pascovici D; Cooke B; Haynes PA
    Methods Mol Biol; 2013; 1002():205-22. PubMed ID: 23625406
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The diversity of protein turnover and abundance under nitrogen-limited steady-state conditions in Saccharomyces cerevisiae.
    Helbig AO; Daran-Lapujade P; van Maris AJ; de Hulster EA; de Ridder D; Pronk JT; Heck AJ; Slijper M
    Mol Biosyst; 2011 Dec; 7(12):3316-26. PubMed ID: 21984188
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An effect size filter improves the reproducibility in spectral counting-based comparative proteomics.
    Gregori J; Villarreal L; Sánchez A; Baselga J; Villanueva J
    J Proteomics; 2013 Dec; 95():55-65. PubMed ID: 23770383
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structure-based prediction of the Saccharomyces cerevisiae SH3-ligand interactions.
    Fernandez-Ballester G; Beltrao P; Gonzalez JM; Song YH; Wilmanns M; Valencia A; Serrano L
    J Mol Biol; 2009 May; 388(4):902-16. PubMed ID: 19324052
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The physiological role of CPR1 in Saccharomyces cerevisiae KNU5377 against menadione stress by proteomics.
    Kim IS; Yun HS; Kwak SH; Jin IN
    J Microbiol; 2007 Aug; 45(4):326-32. PubMed ID: 17846586
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantitative assessment of the structural bias in protein-protein interaction assays.
    Björklund AK; Light S; Hedin L; Elofsson A
    Proteomics; 2008 Nov; 8(22):4657-67. PubMed ID: 18924110
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Proteomic analysis of Saccharomyces cerevisiae.
    Pham TK; Wright PC
    Expert Rev Proteomics; 2007 Dec; 4(6):793-813. PubMed ID: 18067417
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.