These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
154 related articles for article (PubMed ID: 17461102)
1. The effect of the pore structure and zeta potential of porous polymer monoliths on separation performance in ion-exchange mode. Liapis AI; Grimes BA J Sep Sci; 2007 Mar; 30(5):648-57. PubMed ID: 17461102 [TBL] [Abstract][Full Text] [Related]
2. The design by molecular dynamics modeling and simulations of porous polymer adsorbent media immobilized on the throughpore surfaces of polymeric monoliths. Riccardi E; Wang JC; Liapis AI J Chromatogr Sci; 2009 Jul; 47(6):459-66. PubMed ID: 19555551 [TBL] [Abstract][Full Text] [Related]
3. Porous polymer adsorbent media constructed by molecular dynamics modeling and simulations: the immobilization of charged ligands and their effect on pore structure and local nonelectroneutrality. Riccardi E; Wang JC; Liapis AI J Phys Chem B; 2009 Feb; 113(8):2317-27. PubMed ID: 19182931 [TBL] [Abstract][Full Text] [Related]
4. Modeling and simulation of the dynamic behavior of monoliths. Effects of pore structure from pore network model analysis and comparison with columns packed with porous spherical particles. Liapis AI; Meyers JJ; Crosser OK J Chromatogr A; 1999 Dec; 865(1-2):13-25. PubMed ID: 10674927 [TBL] [Abstract][Full Text] [Related]
5. Recent advances in polymer monoliths for ion-exchange chromatography. Nordborg A; Hilder EF Anal Bioanal Chem; 2009 May; 394(1):71-84. PubMed ID: 19205669 [TBL] [Abstract][Full Text] [Related]
6. Polymeric cation-exchange monolithic columns containing phosphoric acid functional groups for capillary liquid chromatography of peptides and proteins. Chen X; Tolley HD; Lee ML J Chromatogr A; 2010 Jun; 1217(24):3844-54. PubMed ID: 20447640 [TBL] [Abstract][Full Text] [Related]
7. Modeling and Analysis of the Electrokinetic Mass Transport and Adsorption Mechanisms of a Charged Adsorbate in Capillary Electrochromatography Systems Employing Charged Nonporous Adsorbent Particles. Grimes BA; Liapis AI J Colloid Interface Sci; 2001 Feb; 234(1):223-243. PubMed ID: 11161509 [TBL] [Abstract][Full Text] [Related]
8. Network modeling of the convective flow and diffusion of molecules adsorbing in monoliths and in porous particles packed in a chromatographic column. Meyers JJ; Liapis AI J Chromatogr A; 1999 Aug; 852(1):3-23. PubMed ID: 10480225 [TBL] [Abstract][Full Text] [Related]
9. On the chromatographic efficiency of analytical scale column format porous polymer monoliths: interplay of morphology and nanoscale gel porosity. Nischang I J Chromatogr A; 2012 May; 1236():152-63. PubMed ID: 22443891 [TBL] [Abstract][Full Text] [Related]
10. Fabrication and application of zwitterionic phosphorylcholine functionalized monoliths with different hydrophilic crosslinkers in hydrophilic interaction chromatography. Wang Q; Zhang Q; Huang H; Zhao P; Sun L; Peng K; Liu X; Ruan M; Shao H; Crommen J; Yu P; Jiang Z Anal Chim Acta; 2020 Mar; 1101():222-229. PubMed ID: 32029114 [TBL] [Abstract][Full Text] [Related]
11. Novel separation medium spongy monolith for high throughput analyses. Watanabe F; Kubo T; Kaya K; Hosoya K J Chromatogr A; 2009 Oct; 1216(44):7402-8. PubMed ID: 19577755 [TBL] [Abstract][Full Text] [Related]
13. Modeling the construction of polymeric adsorbent media: effects of counter-ions on ligand immobilization and pore structure. Riccardi E; Wang JC; Liapis AI J Chem Phys; 2014 Feb; 140(8):084901. PubMed ID: 24588192 [TBL] [Abstract][Full Text] [Related]
14. One-pot preparation of a novel monolith for high performance liquid chromatography applications. Jiao X; Shen S; Shi T J Chromatogr B Analyt Technol Biomed Life Sci; 2015 Dec; 1007():100-9. PubMed ID: 26590881 [TBL] [Abstract][Full Text] [Related]
15. Using scanning contactless conductivity to optimise photografting procedures and capacity in the production of polymer ion-exchange monoliths. Gillespie E; Connolly D; Paull B Analyst; 2009 Jul; 134(7):1314-21. PubMed ID: 19562196 [TBL] [Abstract][Full Text] [Related]
16. Design of monoliths through their mechanical properties. Podgornik A; Savnik A; JanĨar J; Krajnc NL J Chromatogr A; 2014 Mar; 1333():9-17. PubMed ID: 24529408 [TBL] [Abstract][Full Text] [Related]
17. Biocompatible polymeric monoliths for protein and peptide separations. Li Y; Lee ML J Sep Sci; 2009 Oct; 32(20):3369-78. PubMed ID: 19824026 [TBL] [Abstract][Full Text] [Related]
18. Synthesis and Characterization of Polymeric Microspheres Template for a Homogeneous and Porous Monolith. Ibadat NF; Ongkudon CM; Saallah S; Misson M Polymers (Basel); 2021 Oct; 13(21):. PubMed ID: 34771196 [TBL] [Abstract][Full Text] [Related]
19. Quantitative analysis and synthesis of the electrokinetic mass transport and adsorption mechanisms of a charged adsorbate in capillary electrochromatography systems employing charged adsorbent particles. Grimes BA; Liapis AI J Chromatogr A; 2001 Jun; 919(1):157-79. PubMed ID: 11459302 [TBL] [Abstract][Full Text] [Related]
20. Modeling the velocity field of the electroosmotic flow in charged capillaries and in capillary columns packed with charged particles: interstitial and intraparticle velocities in capillary electrochromatography systems. Liapis AI; Grimes BA J Chromatogr A; 2000 Apr; 877(1-2):181-215. PubMed ID: 10845799 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]