These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 17461541)

  • 1. Monooxygenase activity of type 3 copper proteins.
    Itoh S; Fukuzumi S
    Acc Chem Res; 2007 Jul; 40(7):592-600. PubMed ID: 17461541
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrophilic arene hydroxylation and phenol O-H oxidations performed by an unsymmetric μ-η(1):η(1)-O2-peroxo dicopper(II) complex.
    Garcia-Bosch I; Ribas X; Costas M
    Chemistry; 2012 Feb; 18(7):2113-22. PubMed ID: 22250002
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural and reactivity models for copper oxygenases: cooperative effects and novel reactivities.
    Serrano-Plana J; Garcia-Bosch I; Company A; Costas M
    Acc Chem Res; 2015 Aug; 48(8):2397-406. PubMed ID: 26207342
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Kinetic evaluation of catalase and peroxygenase activities of tyrosinase.
    Yamazaki S; Morioka C; Itoh S
    Biochemistry; 2004 Sep; 43(36):11546-53. PubMed ID: 15350140
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Catalytic oxygenation of phenols by arthropod hemocyanin, an oxygen carrier protein, from Portunus trituberculatus.
    Fujieda N; Yakiyama A; Itoh S
    Dalton Trans; 2010 Mar; 39(12):3083-92. PubMed ID: 20221543
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tyrosinase reactivity in a model complex: an alternative hydroxylation mechanism.
    Mirica LM; Vance M; Rudd DJ; Hedman B; Hodgson KO; Solomon EI; Stack TD
    Science; 2005 Jun; 308(5730):1890-2. PubMed ID: 15976297
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Significant enhancement of monooxygenase activity of oxygen carrier protein hemocyanin by urea.
    Morioka C; Tachi Y; Suzuki S; Itoh S
    J Am Chem Soc; 2006 May; 128(21):6788-9. PubMed ID: 16719449
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Kinetic evaluation of phenolase activity of tyrosinase using simplified catalytic reaction system.
    Yamazaki S; Itoh S
    J Am Chem Soc; 2003 Oct; 125(43):13034-5. PubMed ID: 14570470
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Oxidation mechanism of phenols by dicopper-dioxygen (Cu(2)/O(2)) complexes.
    Osako T; Ohkubo K; Taki M; Tachi Y; Fukuzumi S; Itoh S
    J Am Chem Soc; 2003 Sep; 125(36):11027-33. PubMed ID: 12952484
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Monooxygenase activity of Octopus vulgaris hemocyanin.
    Suzuki K; Shimokawa C; Morioka C; Itoh S
    Biochemistry; 2008 Jul; 47(27):7108-15. PubMed ID: 18553939
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Copper-O2 reactivity of tyrosinase models towards external monophenolic substrates: molecular mechanism and comparison with the enzyme.
    Rolff M; Schottenheim J; Decker H; Tuczek F
    Chem Soc Rev; 2011 Jul; 40(7):4077-98. PubMed ID: 21416076
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Self-assembly of the oxy-tyrosinase core and the fundamental components of phenolic hydroxylation.
    Citek C; Lyons CT; Wasinger EC; Stack TD
    Nat Chem; 2012 Mar; 4(4):317-22. PubMed ID: 22437718
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reaction coordinate of a functional model of tyrosinase: spectroscopic and computational characterization.
    Op't Holt BT; Vance MA; Mirica LM; Heppner DE; Stack TD; Solomon EI
    J Am Chem Soc; 2009 May; 131(18):6421-38. PubMed ID: 19368383
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Theoretical study of the hydroxylation of phenolates by the Cu(2)O (2)(N,N'-dimethylethylenediamine) (2) (2+) complex.
    Güell M; Luis JM; Solà M; Siegbahn PE
    J Biol Inorg Chem; 2009 Feb; 14(2):229-42. PubMed ID: 18972140
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Active site models for the Cu(A) site of peptidylglycine α-hydroxylating monooxygenase and dopamine β-monooxygenase.
    Kunishita A; Ertem MZ; Okubo Y; Tano T; Sugimoto H; Ohkubo K; Fujieda N; Fukuzumi S; Cramer CJ; Itoh S
    Inorg Chem; 2012 Sep; 51(17):9465-80. PubMed ID: 22908844
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Theoretical study of the oxidation of phenolates by the [Cu2O2(N,N'-di-tert-butylethylenediamine)2]2+ complex.
    Liu YF; Yu JG; Siegbahn PE; Blomberg MR
    Chemistry; 2013 Feb; 19(6):1942-54. PubMed ID: 23292840
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A comparison of the thermodynamics of O[bond]O cleavage for dicopper complexes in enzymes and synthetic systems.
    Siegbahn PEM
    J Biol Inorg Chem; 2003 May; 8(5):577-585. PubMed ID: 12764603
    [TBL] [Abstract][Full Text] [Related]  

  • 18. O2 activation by binuclear Cu sites: noncoupled versus exchange coupled reaction mechanisms.
    Chen P; Solomon EI
    Proc Natl Acad Sci U S A; 2004 Sep; 101(36):13105-10. PubMed ID: 15340147
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Efficient Biomimetic Hydroxylation Catalysis with a Bis(pyrazolyl)imidazolylmethane Copper Peroxide Complex.
    Wilfer C; Liebhäuser P; Hoffmann A; Erdmann H; Grossmann O; Runtsch L; Paffenholz E; Schepper R; Dick R; Bauer M; Dürr M; Ivanović-Burmazović I; Herres-Pawlis S
    Chemistry; 2015 Dec; 21(49):17639-49. PubMed ID: 26458073
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hydroxylation of phenolic compounds by a peroxodicopper(II) complex: further insight into the mechanism of tyrosinase.
    Palavicini S; Granata A; Monzani E; Casella L
    J Am Chem Soc; 2005 Dec; 127(51):18031-6. PubMed ID: 16366554
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.